Пример #1
0
def find_segments_helper(seg_cnt):
    # Global is for inter process communication
    global segdat, objdat, polyorder
    SegTrace = namedtuple("Trace", "segnum xs ys poly")
    PAD = 2

    the_seg = (segdat == seg_cnt)

    span = spanrange(the_seg)
    mnsr = np.max((span[0].y - PAD, 0))
    mxsr = np.min((span[1].y + PAD, segdat.shape[1]-1))
    y_slc = slice(mnsr, mxsr)
    y_off = (span[0].y+span[1].y)/2.0

    n_el = span[1].x - span[0].x

    if n_el < 50: 
        tr = {"seg_cnt": seg_cnt, "xs": np.array(np.nan), 
            "mean_ys": np.array(np.nan),
            "coeff_ys": np.array(np.nan),
            "trace_sigma": np.nan,
            "ok": False}

        return tr

    means = np.zeros(n_el)
    amps = np.zeros(n_el)
    sds = np.zeros(n_el)
    trace_profile = np.zeros(mxsr-mnsr)

    for i in xrange(n_el):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=RuntimeWarning)
            XX = i+span[0].x
            profile = np.median(objdat[y_slc, XX-3:XX+3], 1)
            profile -= np.min(profile)

            trace_profile += profile

            xs = np.arange(len(profile)) + span[0].y

            means[i] = np.sum(xs*profile)/np.sum(profile)-PAD
    
    xs = np.arange(n_el) + span[0].x
    poly = np.polyfit(xs, means, polyorder)
    tracefit = gfit1d(trace_profile, par=[0, len(trace_profile)/2., 1.7], quiet=1)

    tr = {"seg_cnt": seg_cnt, "xs": np.array(xs), "mean_ys": np.array(means),
        "coeff_ys": np.array(poly), "ok": True, "trace_sigma": np.abs(tracefit.params[2])}

    outstr = '\r%4.4i: fwhm=%3.2f pix' % (seg_cnt, np.abs(tracefit.params[2])*2.355)
    print outstr,
    sys.stdout.flush()
    return tr

    if plot:
        pl.plot(xs, means, 'x')
        pl.plot(xs, ff(xs))
Пример #2
0
    def gFitTrace(self, specimage, y1, y2):
        """
        Fit a gaussian to each column of an image.
        """

        sizex, sizey = specimage.shape
        smoytrace = np.zeros(sizey).astype(np.float)
        boxcar_kernel = signal.boxcar(3) / 3.0

        for c in np.arange(sizey):
            col = specimage[:, c]
            col = col - np.median(col)
            smcol = ni.convolve(col, boxcar_kernel).astype(np.float)
            fit = gfit.gfit1d(smcol, quiet=1, maxiter=15)
            smoytrace[c] = fit.params[1]

        return np.array(smoytrace)
Пример #3
0
    def gFitTrace(self, specimage, y1, y2):
        """
        Fit a gaussian to each column of an image.
        """

        sizex, sizey = specimage.shape
        smoytrace = np.zeros(sizey).astype(np.float)
        boxcar_kernel = signal.boxcar(3) / 3.0

        for c in np.arange(sizey):
            col = specimage[:, c]
            col = col - np.median(col)
            smcol = ni.convolve(col, boxcar_kernel).astype(np.float)
            fit = gfit.gfit1d(smcol, quiet=1, maxiter=15)
            smoytrace[c] = fit.params[1]

        return np.array(smoytrace)
Пример #4
0
def find_segments_helper(seg_cnt):
    # Global is for inter process communication
    global segdat, objdat, polyorder
    SegTrace = namedtuple("Trace", "segnum xs ys poly")
    PAD = 2

    the_seg = (segdat == seg_cnt)

    span = spanrange(the_seg)
    mnsr = np.max((span[0].y - PAD, 0))
    mxsr = np.min((span[1].y + PAD, segdat.shape[1] - 1))
    y_slc = slice(mnsr, mxsr)
    y_off = (span[0].y + span[1].y) / 2.0

    n_el = span[1].x - span[0].x

    if n_el < 50:
        tr = {
            "seg_cnt": seg_cnt,
            "xs": np.array(np.nan),
            "mean_ys": np.array(np.nan),
            "coeff_ys": np.array(np.nan),
            "trace_sigma": np.nan,
            "ok": False
        }

        return tr

    means = np.zeros(n_el)
    amps = np.zeros(n_el)
    sds = np.zeros(n_el)
    trace_profile = np.zeros(mxsr - mnsr)

    for i in xrange(n_el):
        XX = i + span[0].x
        profile = np.median(objdat[y_slc, XX - 3:XX + 3], 1)
        profile -= np.min(profile)

        trace_profile += profile

        xs = np.arange(len(profile)) + span[0].y

        means[i] = np.sum(xs * profile) / np.sum(profile) - PAD

    xs = np.arange(n_el) + span[0].x
    poly = np.polyfit(xs, means, polyorder)
    tracefit = gfit1d(trace_profile,
                      par=[0, len(trace_profile) / 2., 1.7],
                      quiet=1)

    tr = {
        "seg_cnt": seg_cnt,
        "xs": np.array(xs),
        "mean_ys": np.array(means),
        "coeff_ys": np.array(poly),
        "ok": True,
        "trace_sigma": np.abs(tracefit.params[2])
    }

    print '%4.4i: fwhm=%3.2f pix' % (seg_cnt,
                                     np.abs(tracefit.params[2]) * 2.355)
    return tr

    if plot:
        pl.plot(xs, means, 'x')
        pl.plot(xs, ff(xs))
Пример #5
0
def find_segments_helper(seg_cnt):
    """Trace a single spaxel segment and return the solution

    Args:
        seg_cnt (int): the segment number

    Returns:
        dict: Returns a segmentation map Dictionary
        containing::

            {   "seg_cnt": Segment ID number,
                "xs": List of x positions of trace,
                "mean_ys": Measured Y position (average) of the trace,
                "coeff_ys": polyfit coefficients to the mean_ys,
                "trace_sigma": Width of trace in pixels (1 sigma),
                "ok": Trace has more than 50 pixels     }

    """
    # Global is for inter process communication
    global segdat, objdat, polyorder

    # Padding in pixels around trace in Y
    PAD = 2

    # Get this segment
    the_seg = (segdat == seg_cnt)

    # Test for tiny segment
    test = the_seg.nonzero()
    if len(test[0]) < 10 or len(test[1]) < 10:
        tr = {
            "seg_cnt": seg_cnt,
            "xs": np.array(np.nan),
            "mean_ys": np.array(np.nan),
            "coeff_ys": np.array(np.nan),
            "trace_sigma": np.array(np.nan),
            "ok": False
        }
        outstr = '\r%4.4i: %4.4i, TINY SEGMENT, %-5s' % (seg_cnt, len(test[0]),
                                                         tr['ok'])
        print outstr
        sys.stdout.flush()
    # We are OK
    else:
        # Get segment's geometry
        span = spanrange(the_seg)
        mnsr = np.max((span[0].y - PAD, 0))
        mxsr = np.min((span[1].y + PAD, segdat.shape[1] - 1))
        y_slc = slice(mnsr, mxsr)
        # y_off = (span[0].y + span[1].y) / 2.0

        # How long is it in X?
        n_el = span[1].x - span[0].x

        # Don't fit short traces, but flag them by setting "ok" to False
        if n_el < 50:

            # Flag the sigma with zero
            sig = 0.

            # Load up the trace with NaNs
            tr = {
                "seg_cnt": seg_cnt,
                "xs": np.array(np.nan),
                "mean_ys": np.array(np.nan),
                "coeff_ys": np.array(np.nan),
                "trace_sigma": np.array(np.nan),
                "ok": False
            }

        # Trace is long enough, so let's fit it!
        else:

            means = np.zeros(n_el)
            trace_profile = np.zeros(mxsr - mnsr)

            for i in xrange(n_el):
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore", category=RuntimeWarning)
                    XX = i + span[0].x
                    profile = np.median(objdat[y_slc, XX - 3:XX + 3], 1)
                    profile -= np.min(profile)

                    trace_profile += profile

                    xs = np.arange(len(profile)) + span[0].y

                    means[i] = np.sum(xs * profile) / np.sum(profile) - PAD

            xs = np.arange(n_el) + span[0].x

            poly = np.array(np.polyfit(xs, means, polyorder))

            tracefit = gfit1d(trace_profile,
                              par=[0, len(trace_profile) / 2., 1.7], quiet=1)
            sig = np.abs(tracefit.params[2])

            tr = {
                "seg_cnt": seg_cnt,
                "xs": np.array(xs),
                "mean_ys": np.array(means),
                "coeff_ys": poly,
                "trace_sigma": sig,
                "ok": True
            }

        outstr = '\r%4.4i: %4.4i, fwhm=%3.2f pix, %-5s' % (seg_cnt, n_el,
                                                           sig * 2.355, tr['ok'])
        print outstr,
        sys.stdout.flush()

    return tr
Пример #6
0
def find_segments_helper(seg_cnt):
    """Trace a single spaxel segment and return the solution

    Args:
        seg_cnt (int): the segment number

    Returns:
        dict: Returns a segmentation map Dictionary
        containing::

            {   "seg_cnt": Segment ID number,
                "xs": List of x positions of trace,
                "mean_ys": Measured Y position (average) of the trace,
                "coeff_ys": polyfit coefficients to the mean_ys,
                "trace_sigma": Width of trace in pixels (1 sigma),
                "ok": Trace has more than 50 pixels     }

    """
    # Global is for inter process communication
    global segdat, objdat, polyorder

    # Padding in pixels around trace in Y
    PAD = 2

    # Get this segment
    the_seg = (segdat == seg_cnt)

    # Test for tiny segment
    test = the_seg.nonzero()
    if len(test[0]) < 10 or len(test[1]) < 10:
        tr = {
            "seg_cnt": seg_cnt,
            "xs": np.array(np.nan),
            "mean_ys": np.array(np.nan),
            "coeff_ys": np.array(np.nan),
            "trace_sigma": np.array(np.nan),
            "ok": False
        }
        outstr = '\r%4.4i: %4.4i, TINY SEGMENT, %-5s' % (seg_cnt, len(
            test[0]), tr['ok'])
        print outstr
        sys.stdout.flush()
    # We are OK
    else:
        # Get segment's geometry
        span = spanrange(the_seg)
        mnsr = np.max((span[0].y - PAD, 0))
        mxsr = np.min((span[1].y + PAD, segdat.shape[1] - 1))
        y_slc = slice(mnsr, mxsr)
        # y_off = (span[0].y + span[1].y) / 2.0

        # How long is it in X?
        n_el = span[1].x - span[0].x

        # Don't fit short traces, but flag them by setting "ok" to False
        if n_el < 50:

            # Flag the sigma with zero
            sig = 0.

            # Load up the trace with NaNs
            tr = {
                "seg_cnt": seg_cnt,
                "xs": np.array(np.nan),
                "mean_ys": np.array(np.nan),
                "coeff_ys": np.array(np.nan),
                "trace_sigma": np.array(np.nan),
                "ok": False
            }

        # Trace is long enough, so let's fit it!
        else:

            means = np.zeros(n_el)
            trace_profile = np.zeros(mxsr - mnsr)

            for i in xrange(n_el):
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore", category=RuntimeWarning)
                    XX = i + span[0].x
                    profile = np.median(objdat[y_slc, XX - 3:XX + 3], 1)
                    profile -= np.min(profile)

                    trace_profile += profile

                    xs = np.arange(len(profile)) + span[0].y

                    means[i] = np.sum(xs * profile) / np.sum(profile) - PAD

            xs = np.arange(n_el) + span[0].x

            poly = np.array(np.polyfit(xs, means, polyorder))

            tracefit = gfit1d(trace_profile,
                              par=[0, len(trace_profile) / 2., 1.7],
                              quiet=1)
            sig = np.abs(tracefit.params[2])

            tr = {
                "seg_cnt": seg_cnt,
                "xs": np.array(xs),
                "mean_ys": np.array(means),
                "coeff_ys": poly,
                "trace_sigma": sig,
                "ok": True
            }

        outstr = '\r%4.4i: %4.4i, fwhm=%3.2f pix, %-5s' % (seg_cnt, n_el, sig *
                                                           2.355, tr['ok'])
        print outstr,
        sys.stdout.flush()

    return tr