Пример #1
0
def minimize(fn, epochs, batch_shape):
    print('\n\nInfusing CONTENT with STYLE...\n')
    t0 = datetime.now()
    losses = []
    epoch_duration = []
    epoch_duration_float = []
    x = np.random.randn(np.prod(batch_shape))
    for i in range(epochs):
        x, l, _ = fmin_l_bfgs_b(func=fn, x0=x, maxfun=20)
        x = np.clip(x, -127, 127)
        dt = datetime.now() - t0
        total_min = dt.total_seconds() / 60
        epoch_duration.append(dt)
        epoch_duration_float.append(total_min)
        print("epoch=%s, loss=%s, epoch duration = %s, total min = %.3f" %
              (i, l, dt, total_min))
        losses.append(l)

    dt = datetime.now() - t0
    print("\nTotal duration: %.3f" % np.array(epoch_duration_float).sum() +
          ' min')
    plt.plot(losses)
    plt.title("Optimization losses\nElapsed time: %.3f" %
              np.array(epoch_duration_float).sum() + " min")
    plt.show()

    plt.plot(epoch_duration_float, color='orange')
    plt.title('Epoch duration (minutes)')
    plt.xlabel('Epoch')
    plt.ylabel('Minutes')
    plt.show()

    newimg = x.reshape(*batch_shape)
    final_img = unpreprocess(newimg)
    return final_img[0]
Пример #2
0
def minimize(fn, epochs, batch_shape):
    t0 = datetime.now()
    losses = []
    x = np.random.randn(np.prod(batch_shape))
    for i in range(epochs):
        x, l, _ = fmin_l_bfgs_b(func=fn, x0=x, maxfun=20)
        x = np.clip(x, -127, 127)
        print("iter=%s, loss=%s" % (i, l))
        losses.append(l)

    print("duration:", datetime.now() - t0)
    plt.plot(losses)
    plt.show()

    newimg = x.reshape(*batch_shape)
    final_img = unpreprocess(newimg)
    return final_img[0]
def minimize(fn, epochs, batch_shape):
  t0 = datetime.now()
  losses = []
  x = np.random.randn(np.prod(batch_shape))
  for i in range(epochs):
    x, l, _ = fmin_l_bfgs_b(
      func=fn,
      x0=x,
      maxfun=20
    )
    x = np.clip(x, -127, 127)
    print("iter=%s, loss=%s" % (i, l))
    losses.append(l)

  print("duration:", datetime.now() - t0)
  plt.plot(losses)
  plt.show()

  newimg = x.reshape(*batch_shape)
  final_img = unpreprocess(newimg)
  return final_img[0]