def calcSummaryStats(Data, SS, LP, **kwargs): ''' Calculate summary statistics for given dataset and local parameters Returns -------- SS : SuffStatBag object, with K components. ''' if not hasattr(Data, 'X_NE'): Data.X_NE = np.hstack([Data.X, np.ones(Data.nObs)[:, np.newaxis]]) Y_N = Data.Y X_NE = Data.X_NE E = X_NE.shape[1] if 'resp' in LP: # Dense responsibility calculations resp = LP['resp'] K = resp.shape[1] S_yy_K = dotATB(resp, np.square(Y_N)).flatten() S_yx_KE = dotATB(resp, Y_N * X_NE) # Expected outer product S_xxT_KEE = np.zeros((K, E, E)) sqrtResp_k_N = np.sqrt(resp[:, 0]) sqrtR_X_k_NE = sqrtResp_k_N[:, np.newaxis] * X_NE S_xxT_KEE[0] = dotATA(sqrtR_X_k_NE) for k in xrange(1, K): np.sqrt(resp[:, k], out=sqrtResp_k_N) np.multiply(sqrtResp_k_N[:, np.newaxis], X_NE, out=sqrtR_X_k_NE) S_xxT_KEE[k] = dotATA(sqrtR_X_k_NE) else: raise ValueError("TODO") spR = LP['spR'] K = spR.shape[1] if SS is None: SS = SuffStatBag(K=K, D=Data.dim, E=E) elif not hasattr(SS, 'E'): SS._Fields.E = E SS.setField('xxT_KEE', S_xxT_KEE, dims=('K', 'E', 'E')) SS.setField('yx_KE', S_yx_KE, dims=('K', 'E')) SS.setField('yy_K', S_yy_K, dims=('K')) # Expected count for each k # Usually computed by allocmodel. But just in case... if not hasattr(SS, 'N'): if 'resp' in LP: SS.setField('N', LP['resp'].sum(axis=0), dims='K') else: SS.setField('N', as1D(toCArray(LP['spR'].sum(axis=0))), dims='K') #SS.setField("N_K", SS.N, dims="K") return SS
def calcHardMergeGap(self, SS, kA, kB): ''' Calculate scalar improvement in ELBO for hard merge of comps kA, kB Does *not* include any entropy. Returns --------- L : scalar ''' m_K = SS.K - 1 m_SS = SuffStatBag(K=SS.K, D=0) m_SS.setField('StartStateCount', SS.StartStateCount.copy(), dims='K') m_SS.setField('TransStateCount', SS.TransStateCount.copy(), dims=('K', 'K')) m_SS.mergeComps(kA, kB) # Create candidate beta vector m_beta = StickBreakUtil.rho2beta(self.rho) m_beta[kA] += m_beta[kB] m_beta = np.delete(m_beta, kB, axis=0) # Create candidate rho and omega vectors m_rho = StickBreakUtil.beta2rho(m_beta, m_K) m_omega = np.delete(self.omega, kB) # Create candidate startTheta m_startTheta = self.startAlpha * m_beta.copy() m_startTheta[:m_K] += m_SS.StartStateCount # Create candidate transTheta m_transTheta = self.transAlpha * np.tile(m_beta, (m_K, 1)) if self.kappa > 0: m_transTheta[:, :m_K] += self.kappa * np.eye(m_K) m_transTheta[:, :m_K] += m_SS.TransStateCount # Evaluate objective func. for both candidate and current model Lcur = calcELBO_LinearTerms( SS=SS, rho=self.rho, omega=self.omega, startTheta=self.startTheta, transTheta=self.transTheta, alpha=self.transAlpha, startAlpha=self.startAlpha, gamma=self.gamma, kappa=self.kappa) Lprop = calcELBO_LinearTerms( SS=m_SS, rho=m_rho, omega=m_omega, startTheta=m_startTheta, transTheta=m_transTheta, alpha=self.transAlpha, startAlpha=self.startAlpha, gamma=self.gamma, kappa=self.kappa) # Note: This gap relies on fact that all nonlinear terms are entropies, return Lprop - Lcur
def calcSummaryStats(Data, LP, doPrecompEntropy=0, doPrecompMergeEntropy=0, mPairIDs=None, trackDocUsage=0, **kwargs): ''' Calculate summary statistics for given data slice and local params. Returns ------- SS : SuffStatBag ''' if mPairIDs is None: M = 0 else: M = len(mPairIDs) resp = LP['resp'] K = resp.shape[1] startLocIDs = Data.doc_range[:-1] StartStateCount = np.sum(resp[startLocIDs], axis=0) N = np.sum(resp, axis=0) if 'TransCount' in LP: TransStateCount = np.sum(LP['TransCount'], axis=0) else: respPair = LP['respPair'] TransStateCount = np.sum(respPair, axis=0) SS = SuffStatBag(K=K, D=Data.dim, M=M) SS.setField('StartStateCount', StartStateCount, dims=('K')) SS.setField('TransStateCount', TransStateCount, dims=('K', 'K')) SS.setField('N', N, dims=('K')) SS.setField('nDoc', Data.nDoc, dims=None) if doPrecompEntropy or 'Htable' in LP: # Compute entropy terms! # 'Htable', 'Hstart' will both be in Mdict Mdict = calcELBO_NonlinearTerms(Data=Data, LP=LP, returnMemoizedDict=1) SS.setELBOTerm('Htable', Mdict['Htable'], dims=('K', 'K')) SS.setELBOTerm('Hstart', Mdict['Hstart'], dims=('K')) if doPrecompMergeEntropy: subHstart, subHtable = HMMUtil.PrecompMergeEntropy_SpecificPairs( LP, Data, mPairIDs) SS.setMergeTerm('Hstart', subHstart, dims=('M')) SS.setMergeTerm('Htable', subHtable, dims=('M', 2, 'K')) SS.mPairIDs = np.asarray(mPairIDs) if trackDocUsage: # Track how often topic appears in a seq. with mass > thresh. DocUsage = np.zeros(K) for n in xrange(Data.nDoc): start = Data.doc_range[n] stop = Data.doc_range[n + 1] DocUsage += np.sum(LP['resp'][start:stop], axis=0) > 0.01 SS.setSelectionTerm('DocUsageCount', DocUsage, dims='K') return SS
def init_global_params(self, Data, K=0, **initArgs): ''' Initialize rho, omega, and theta to reasonable values. This is only called by "from scratch" init routines. ''' self.K = K self.rho = OptimizerRhoOmega.create_initrho(K) self.omega = (1.0 + self.gamma) * np.ones(K) # To initialize theta, perform standard update given rho, omega # but with "empty" sufficient statistics. SS = SuffStatBag(K=self.K, D=Data.dim) SS.setField('StartStateCount', np.ones(K), dims=('K')) SS.setField('TransStateCount', np.ones((K, K)), dims=('K', 'K')) self.transTheta, self.startTheta = self._calcTheta(SS)
def get_global_suff_stats(self, Data, LP, doPrecompEntropy=0, **kwargs): ''' Compute sufficient stats for provided dataset and local params Returns ------- SS : SuffStatBag Updated fields * NodeStateCount : 2D array, nNodes x K * N : 2D array, size K x K ''' K = LP['resp'].shape[-1] V = Data.nNodes SS = SuffStatBag(K=K, D=Data.dim, V=V) # NodeStateCount_src[i,k] # Num edges assigned to topic k associated with node i as source srcResp = LP['resp'].sum(axis=2) NodeStateCount_src = Data.getSparseSrcNodeMat() * srcResp # Equivalent but slower: for loop # NodeStateCount_src = np.zeros((Data.nNodes, K)) # for i in xrange(Data.nNodes): # mask_i = Data.edges[:,0] == i # NodeStateCount_src[i,:] = srcResp[mask_i].sum(axis=0) # NodeStateCount_rcv[i,k] # Num edges assigned to topic k associated with node i as receiver rcvResp = LP['resp'].sum(axis=1) NodeStateCount_rcv = Data.getSparseRcvNodeMat() * rcvResp # Summing src counts and rcv counts gives the total SS.setField('NodeStateCount', NodeStateCount_src + NodeStateCount_rcv, dims=('V', 'K')) # Compute total atoms assigned to each cluster pair Nresp = np.sum(LP['resp'], axis=0) SS.setField('N', Nresp, dims=('K', 'K')) if doPrecompEntropy: # Remember, resp has shape nEdges x K x K # So, need to sum so we track scalar entropy, not K x K Hresp = calcLentropyAsScalar(LP) SS.setELBOTerm('Hresp', Hresp, dims=None) return SS
def calcSummaryStatsForContigBlock(self, Data, SS=None, a=None, b=None, **kwargs): ''' Calculate summary statistics for specific block of dataset Returns -------- SS : SuffStatBag object, with K components. ''' SS = SuffStatBag(K=1, D=Data.dim) # Expected count SS.setField('N', (b - a) * np.ones(1, dtype=np.float64), dims='K') # Expected outer-product xxT = dotATA(Data.X[a:b])[np.newaxis, :, :] SS.setField('xxT', xxT, dims=('K', 'D', 'D')) return SS
def get_global_suff_stats(self, Data, LP, doPrecompEntropy=0, **kwargs): ''' Compute sufficient stats for provided dataset and local params Returns ------- SS : SuffStatBag with K components and fields * sumSource : nNodes x K * sumReceiver : nNodes x K ''' V = Data.nNodes K = LP['resp'].shape[-1] SS = SuffStatBag(K=K, D=Data.dim, V=V) if 'NodeStateCount' not in LP: assert 'resp' in LP LP = self.initLPFromResp(Data, LP) SS.setField('NodeStateCount', LP['NodeStateCount'], dims=('V', 'K')) if np.allclose(LP['resp'].sum(axis=1).min(), 1.0): # If the LP fully represents all present edges, # then the NodeStateCount should as well. assert np.allclose(SS.NodeStateCount, Data.nEdges * 2) SS.setField('N', LP['N_fg'], dims=('K', )) SS.setField('scaleFactor', Data.nEdges, dims=None) if 'Ldata_bg' in LP: SS.setELBOTerm('Ldata_bg', LP['Ldata_bg'], dims=None) if doPrecompEntropy: Hresp_fg = LP['Lentropy_fg'] # = -1 * calcRlogR(LP['resp']) Hresp_bg = LP['Lentropy_bg'] SS.setELBOTerm('Hresp', Hresp_fg, dims='K') SS.setELBOTerm('Hresp_bg', Hresp_bg, dims=None) return SS
def get_global_suff_stats(self, Data, LP, doPrecompEntropy=None, **kwargs): ''' Calculate the sufficient statistics for global parameter updates Only adds stats relevant for this allocModel. Other stats are added by the obsModel. Args ------- Data : bnpy data object LP : local param dict with fields resp : Data.nObs x K array, where resp[n,k] = posterior resp of comp k doPrecompEntropy : boolean flag indicates whether to precompute ELBO terms in advance used for memoized learning algorithms (moVB) Returns ------- SS : SuffStats for K components, with field N : vector of dimension K, effective number of observations assigned to each comp Npair : matrix of dimensions K x K, where Npair[l,m] = effective # of obs x_{ij} with z_{il} and z_{jm} ''' Npair = np.sum(LP['resp'], axis=0) self.Npair = Npair N = np.sum(LP['respSingle'], axis=0) SS = SuffStatBag(K=N.shape[0], D=Data.dim) SS.setField('Npair', Npair, dims=('K', 'K')) SS.setField('N', N, dims=('K',)) if doPrecompEntropy is not None: ElogqZ_vec = self.E_logqZ(LP) SS.setELBOTerm('ElogqZ', ElogqZ_vec, dims=('K',)) return SS
def calcSummaryStats(Data, SS, LP, **kwargs): ''' Calculate summary statistics for given dataset and local parameters Returns -------- SS : SuffStatBag object, with K components. ''' X = Data.X if 'resp' in LP: resp = LP['resp'] K = resp.shape[1] # 1/2: Compute mean statistic S_x = dotATB(resp, X) # 2/2: Compute expected outer-product statistic S_xxT = np.zeros((K, Data.dim, Data.dim)) sqrtResp_k = np.sqrt(resp[:, 0]) sqrtRX_k = sqrtResp_k[:, np.newaxis] * Data.X S_xxT[0] = dotATA(sqrtRX_k) for k in range(1, K): np.sqrt(resp[:, k], out=sqrtResp_k) np.multiply(sqrtResp_k[:, np.newaxis], Data.X, out=sqrtRX_k) S_xxT[k] = dotATA(sqrtRX_k) else: spR = LP['spR'] K = spR.shape[1] # 1/2: Compute mean statistic S_x = spR.T * X # 2/2: Compute expected outer-product statistic S_xxT = calcSpRXXT(X=X, spR_csr=spR) if SS is None: SS = SuffStatBag(K=K, D=Data.dim) # Expected mean for each state k SS.setField('x', S_x, dims=('K', 'D')) # Expected outer-product for each state k SS.setField('xxT', S_xxT, dims=('K', 'D', 'D')) # Expected count for each k # Usually computed by allocmodel. But just in case... if not hasattr(SS, 'N'): if 'resp' in LP: SS.setField('N', LP['resp'].sum(axis=0), dims='K') else: SS.setField('N', as1D(toCArray(LP['spR'].sum(axis=0))), dims='K') return SS
def calcSummaryStatsForContigBlock(self, Data, SS=None, a=0, b=0): ''' Calculate sufficient stats for a single contiguous block of data ''' if SS is None: SS = SuffStatBag(K=1, D=Data.dim) SS.setField('N', (b - a) * np.ones(1), dims='K') SS.setField('x', np.sum(Data.X[a:b], axis=0)[np.newaxis, :], dims=('K', 'D')) SS.setField('xxT', dotATA(Data.X[a:b])[np.newaxis, :, :], dims=('K', 'D', 'D')) return SS
def calcSummaryStats(Dslice, LP=None, alpha=None, doPrecompEntropy=False, cslice=(0, None), **kwargs): """ Calculate summary from local parameters for given data slice. Parameters ------- Data : bnpy data object LP : local param dict with fields resp : Data.nObs x K array, where resp[n,k] = posterior resp of comp k doPrecompEntropy : boolean flag indicates whether to precompute ELBO terms in advance used for memoized learning algorithms (moVB) Returns ------- SS : SuffStatBag with K components * nDoc : scalar float Counts total documents available in provided data. Also has optional ELBO field when precompELBO is True * Hvec : 1D array, size K Vector of entropy contributions from each comp. Hvec[k] = \sum_{n=1}^N H[q(z_n)], a function of 'resp' """ K = LP['DocTopicCount'].shape[1] SS = SuffStatBag(K=K, D=Dslice.dim) if cslice[1] is None: SS.setField('nDoc', Dslice.nDoc, dims=None) else: SS.setField('nDoc', cslice[1] - cslice[0], dims=None) SS.setField('nDoc', Dslice.nDoc, dims=None) if doPrecompEntropy: assert 'theta' in LP Lalloc = L_alloc(Dslice, LP, alpha=alpha) SS.setELBOTerm('L_alloc', Lalloc, dims=None) if 'nnzPerRow' in LP and LP['nnzPerRow'] == 1: SS.setELBOTerm('Hvec', 0.0, dims=None) else: Hvec = L_entropy(Dslice, LP, returnVector=1) SS.setELBOTerm('Hvec', Hvec, dims='K') return SS
def calcSummaryStatsForContigBlock(self, Data, a=0, b=0, **kwargs): ''' Calculate summary stats for a contiguous block of the data. Returns -------- SS : SuffStatBag object, with 1 component. ''' Xab = Data.X[a:b] # 2D array, Nab x D CountON = np.sum(Xab, axis=0)[np.newaxis, :] CountOFF = (b - a) - CountON SS = SuffStatBag(K=1, D=Data.dim) SS.setField('N', np.asarray([b - a], dtype=np.float64), dims='K') SS.setField('Count1', CountON, dims=('K', 'D')) SS.setField('Count0', CountOFF, dims=('K', 'D')) return SS
def calcSummaryStats(Data, SS, LP, **kwargs): ''' Calculate summary statistics for given dataset and local parameters Returns -------- SS : SuffStatBag object, with K components. ''' X = Data.X if 'resp' in LP: resp = LP['resp'] K = resp.shape[1] # 1/2: Compute mean statistic S_x = dotATB(resp, X) # 2/2: Compute expected outer-product statistic S_xx = calcRXX_withDenseResp(resp, X) else: spR = LP['spR'] K = spR.shape[1] # 1/2: Compute mean statistic S_x = spR.T * X # 2/2: Compute expected outer-product statistic S_xx = calcSpRXX(X=X, spR_csr=spR) if SS is None: SS = SuffStatBag(K=K, D=Data.dim) # Expected mean for each state k SS.setField('x', S_x, dims=('K', 'D')) # Expected sum-of-squares for each state k SS.setField('xx', S_xx, dims=('K', 'D')) # Expected count for each k # Usually computed by allocmodel. But sometimes not (eg TopicModel) if not hasattr(SS, 'N'): if 'resp' in LP: SS.setField('N', LP['resp'].sum(axis=0), dims='K') else: SS.setField('N', as1D(toCArray(LP['spR'].sum(axis=0))), dims='K') return SS
def get_global_suff_stats(self, Data, LP, doPrecompEntropy=None, **kwargs): ''' Create sufficient stats needed for global param updates Args ------- Data : bnpy data object LP : Dictionary containing the local parameters. Expected to contain: resp : Data.nObs x K array respPair : Data.nObs x K x K array (from the def. of respPair, note respPair[0,:,:] is undefined) Returns ------- SS : SuffStatBag with fields StartStateCount : A vector of length K with entry i being resp(z_{1k}) = resp[0,:] TransStateCount : A K x K matrix where TransStateCount[i,j] = sum_{n=2}^K respPair(z_{n-1,j}, z_{nk}) N : A vector of length K with entry k being sum_{n=1}^Data.nobs resp(z_{nk}) The first two of these are used by FiniteHMM.update_global_params, and the third is used by ObsModel.update_global_params. (see the documentation for information about resp and respPair) ''' resp = LP['resp'] respPair = LP['respPair'] K = resp.shape[1] startLocIDs = Data.doc_range[:-1] StartStateCount = np.sum(resp[startLocIDs], axis=0) N = np.sum(resp, axis=0) TransStateCount = np.sum(respPair, axis=0) SS = SuffStatBag(K=K, D=Data.dim) SS.setField('StartStateCount', StartStateCount, dims=('K')) SS.setField('TransStateCount', TransStateCount, dims=('K', 'K')) SS.setField('N', N, dims=('K')) if doPrecompEntropy is not None: entropy = self.elbo_entropy(Data, LP) SS.setELBOTerm('Elogqz', entropy, dims=None) return SS
def calcSummaryStats(Data, SS, LP, DataAtomType='doc', **kwargs): ''' Calculate summary statistics for given dataset and local parameters Returns -------- SS : SuffStatBag object, with K components. ''' if 'resp' in LP: K = LP['resp'].shape[1] else: K = LP['spR'].shape[1] nnzPerRow = LP['nnzPerRow'] if SS is None: SS = SuffStatBag(K=K, D=Data.vocab_size) if DataAtomType == 'doc': # X : 2D sparse matrix, size nDoc x vocab_size X = Data.getSparseDocTypeCountMatrix() # WordCounts : 2D array, size K x vocab_size # obtained by sparse matrix multiply # here, '*' operator does this because X is sparse matrix type Nvec = None if 'resp' in LP: WordCounts = LP['resp'].T * X if not hasattr(SS, 'N'): Nvec = LP['resp'].sum(axis=0) else: WordCounts = (LP['spR'].T * X).toarray() if not hasattr(SS, 'N'): Nvec = as1D(toCArray(LP['spR'].sum(axis=0))) if Nvec is not None: SS.setField('N', Nvec, dims=('K')) else: # 2D sparse matrix, size V x N X = Data.getSparseTokenTypeCountMatrix() if 'resp' in LP: WordCounts = (X * LP['resp']).T # matrix-matrix product else: WordCounts = (X * LP['spR']).T.toarray() SS.setField('WordCounts', WordCounts, dims=('K', 'D')) SS.setField('SumWordCounts', np.sum(WordCounts, axis=1), dims=('K')) return SS """
def calcSummaryStatsForContigBlock(self, Data, SS=None, a=0, b=0): ''' Calculate sufficient stats for a single contiguous block of data ''' D = Data.X.shape[1] E = Data.Xprev.shape[1] if SS is None: SS = SuffStatBag(K=1, D=D, E=E) elif not hasattr(SS, 'E'): SS._Fields.E = E ppT = dotATA(Data.Xprev[a:b])[np.newaxis, :, :] xxT = dotATA(Data.X[a:b])[np.newaxis, :, :] pxT = dotATB(Data.Xprev[a:b], Data.X[a:b])[np.newaxis, :, :] SS.setField('N', (b - a) * np.ones(1), dims='K') SS.setField('xxT', xxT, dims=('K', 'D', 'D')) SS.setField('ppT', ppT, dims=('K', 'E', 'E')) SS.setField('pxT', pxT, dims=('K', 'E', 'D')) return SS
def calcSummaryStats(Data, SS, LP, **kwargs): ''' Calculate sufficient statistics for local params at data slice. Returns ------- SS ''' X = Data.X Xprev = Data.Xprev resp = LP['resp'] K = resp.shape[1] D = Data.X.shape[1] E = Data.Xprev.shape[1] if SS is None: SS = SuffStatBag(K=K, D=D, E=E) elif not hasattr(SS, 'E'): SS._Fields.E = E # Expected count for each k # Usually computed by allocmodel. But just in case... if not hasattr(SS, 'N'): SS.setField('N', np.sum(resp, axis=0), dims='K') # Expected outer products sqrtResp = np.sqrt(resp) xxT = np.empty((K, D, D)) ppT = np.empty((K, E, E)) pxT = np.empty((K, E, D)) for k in xrange(K): sqrtResp_k = sqrtResp[:, k][:, np.newaxis] xxT[k] = dotATA(sqrtResp_k * Data.X) ppT[k] = dotATA(sqrtResp_k * Data.Xprev) pxT[k] = np.dot(Data.Xprev.T, resp[:, k][:, np.newaxis] * Data.X) SS.setField('xxT', xxT, dims=('K', 'D', 'D')) SS.setField('ppT', ppT, dims=('K', 'E', 'E')) SS.setField('pxT', pxT, dims=('K', 'E', 'D')) return SS
def calcSummaryStats(Dslice, SS, LP, DataAtomType='doc', **kwargs): ''' Calculate summary statistics for given dataset and local parameters Returns -------- SS : SuffStatBag object, with K components. ''' if 'resp' in LP: N = LP['resp'].shape[0] K = LP['resp'].shape[1] if LP['resp'].ndim == 2: CompDims = ('K', ) # typical case else: assert LP['resp'].ndim == 3 CompDims = ('K', 'K') # relational data else: assert 'spR' in LP N, K = LP['spR'].shape CompDims = ('K', ) if SS is None: SS = SuffStatBag(K=K, D=Dslice.dim) if not hasattr(SS, 'N'): if 'resp' in LP: SS.setField('N', np.sum(LP['resp'], axis=0), dims=CompDims) else: SS.setField('N', LP['spR'].sum(axis=0), dims=CompDims) if hasattr(Dslice, 'X'): X = Dslice.X if 'resp' in LP: # Matrix-matrix product, result is K x D (or KxKxD if relational) CountON = np.tensordot(LP['resp'].T, X, axes=1) CountOFF = np.tensordot(LP['resp'].T, 1 - X, axes=1) else: CountON = LP['spR'].T * X CountOFF = LP['spR'].T * (1 - X) elif DataAtomType == 'doc' or Dslice.nDoc == N: X = Dslice.getSparseDocTypeBinaryMatrix() if 'resp' in LP: # Sparse matrix product CountON = LP['resp'].T * X else: CountON = (LP['spR'].T * X).toarray() CountOFF = SS.N[:, np.newaxis] - CountON else: CountON = np.zeros((SS.K, Dslice.vocab_size)) CountOFF = np.zeros((SS.K, Dslice.vocab_size)) for d in xrange(Dslice.nDoc): words_d = Dslice.word_id[Dslice.doc_range[d]:Dslice.doc_range[d + 1]] rstart_d = d * Dslice.vocab_size rstop_d = (d + 1) * Dslice.vocab_size if 'resp' in LP: Count_d = LP['resp'][rstart_d:rstop_d, :].T else: raise NotImplementedError("TODO") CountOFF += Count_d CountON[:, words_d] += Count_d[:, words_d] CountOFF[:, words_d] -= Count_d[:, words_d] SS.setField('Count1', CountON, dims=CompDims + ('D', )) SS.setField('Count0', CountOFF, dims=CompDims + ('D', )) return SS
def calcSummaryStats(Data, LP, doPrecompEntropy=False, doPrecompMergeEntropy=False, mPairIDs=None, mergePairSelection=None, trackDocUsage=False, **kwargs): ''' Calculate sufficient statistics for global updates. Parameters ------- Data : bnpy data object LP : local param dict with fields resp : Data.nObs x K array, where resp[n,k] = posterior resp of comp k doPrecompEntropy : boolean flag indicates whether to precompute ELBO terms in advance used for memoized learning algorithms (moVB) doPrecompMergeEntropy : boolean flag indicates whether to precompute ELBO terms in advance for certain merge candidates. Returns ------- SS : SuffStatBag with K components Summarizes for this mixture model, with fields * N : 1D array, size K N[k] = expected number of items assigned to comp k Also has optional ELBO field when precompELBO is True * ElogqZ : 1D array, size K Vector of entropy contributions from each comp. ElogqZ[k] = \sum_{n=1}^N resp[n,k] log resp[n,k] Also has optional Merge field when precompMergeELBO is True * ElogqZ : 2D array, size K x K Each term is scalar entropy of merge candidate ''' if mPairIDs is not None and len(mPairIDs) > 0: M = len(mPairIDs) else: M = 0 if 'resp' in LP: Nvec = np.sum(LP['resp'], axis=0) K = Nvec.size else: # Sparse assignment case Nvec = as1D(toCArray(LP['spR'].sum(axis=0))) K = LP['spR'].shape[1] if hasattr(Data, 'dim'): SS = SuffStatBag(K=K, D=Data.dim, M=M) else: SS = SuffStatBag(K=K, D=Data.vocab_size, M=M) SS.setField('N', Nvec, dims=('K')) if doPrecompEntropy: Mdict = calcELBO_NonlinearTerms(LP=LP, returnMemoizedDict=1) if type(Mdict['Hresp']) == float: # SPARSE HARD ASSIGNMENTS SS.setELBOTerm('Hresp', Mdict['Hresp'], dims=None) else: SS.setELBOTerm('Hresp', Mdict['Hresp'], dims=('K', )) if doPrecompMergeEntropy: m_Hresp = None if 'resp' in LP: m_Hresp = -1 * NumericUtil.calcRlogR_specificpairs( LP['resp'], mPairIDs) elif 'spR' in LP: if LP['nnzPerRow'] > 1: m_Hresp = calcSparseMergeRlogR(spR_csr=LP['spR'], nnzPerRow=LP['nnzPerRow'], mPairIDs=mPairIDs) else: raise ValueError("Need resp or spR in LP") if m_Hresp is not None: assert m_Hresp.size == len(mPairIDs) SS.setMergeTerm('Hresp', m_Hresp, dims=('M')) if trackDocUsage: Usage = np.sum(LP['resp'] > 0.01, axis=0) SS.setSelectionTerm('DocUsageCount', Usage, dims='K') return SS
def calcSummaryStats(Dslice, LP=None, alpha=None, alphaEbeta=None, doTrackTruncationGrowth=0, doPrecompEntropy=0, doPrecompMergeEntropy=0, mergePairSelection=None, mPairIDs=None, trackDocUsage=0, **kwargs): """ Calculate summary from local parameters for given data slice. Parameters ------- Data : bnpy data object LP : local param dict with fields resp : Data.nObs x K array, where resp[n,k] = posterior resp of comp k doPrecompEntropy : boolean flag indicates whether to precompute ELBO terms in advance used for memoized learning algorithms (moVB) Returns ------- SS : SuffStatBag with K components Relevant fields * nDoc : scalar float Counts total documents available in provided data. * sumLogPi : 1D array, size K Entry k equals \sum_{d in docs} E[ \log \pi_{dk} ] * sumLogPiRem : scalar float Equals sum over docs of probability of inactive topics. Also has optional ELBO field when precompELBO is True * Hvec : 1D array, size K Vector of entropy contributions from each comp. Hvec[k] = \sum_{n=1}^N H[q(z_n)], a function of 'resp' """ if mPairIDs is None: M = 0 else: M = len(mPairIDs) K = LP['DocTopicCount'].shape[1] if 'digammaSumTheta' not in LP: digammaSumTheta = digamma(LP['theta'].sum(axis=1) + LP['thetaRem']) LP['digammaSumTheta'] = digammaSumTheta # Used for merges if 'ElogPi' not in LP: LP['ElogPiRem'] = digamma(LP['thetaRem']) - LP['digammaSumTheta'] LP['ElogPi'] = digamma(LP['theta']) - \ LP['digammaSumTheta'][:, np.newaxis] SS = SuffStatBag(K=K, D=Dslice.dim, M=M) SS.setField('nDoc', Dslice.nDoc, dims=None) SS.setField('sumLogPi', np.sum(LP['ElogPi'], axis=0), dims='K') if 'ElogPiEmptyComp' in LP: sumLogPiEmptyComp = np.sum(LP['ElogPiEmptyComp']) - \ np.sum(LP['ElogPiOrigComp']) SS.setField('sumLogPiEmptyComp', sumLogPiEmptyComp, dims=None) if doTrackTruncationGrowth: remvec = np.zeros(K) remvec[K - 1] = np.sum(LP['ElogPiRem']) SS.setField('sumLogPiRemVec', remvec, dims='K') else: SS.setField('sumLogPiRem', np.sum(LP['ElogPiRem']), dims=None) if doPrecompEntropy: Mdict = calcELBO_NonlinearTerms(Data=Dslice, LP=LP, returnMemoizedDict=1) if type(Mdict['Hresp']) == float: # SPARSE HARD ASSIGNMENTS SS.setELBOTerm('Hresp', Mdict['Hresp'], dims=None) else: SS.setELBOTerm('Hresp', Mdict['Hresp'], dims=('K', )) SS.setELBOTerm('slackTheta', Mdict['slackTheta'], dims='K') SS.setELBOTerm('gammalnTheta', Mdict['gammalnTheta'], dims='K') if 'ElogPiEmptyComp' in LP: SS.setELBOTerm('slackThetaEmptyComp', Mdict['slackThetaEmptyComp']) SS.setELBOTerm('gammalnThetaEmptyComp', Mdict['gammalnThetaEmptyComp']) SS.setELBOTerm('HrespEmptyComp', Mdict['HrespEmptyComp']) else: SS.setELBOTerm('gammalnSumTheta', Mdict['gammalnSumTheta'], dims=None) SS.setELBOTerm('slackThetaRem', Mdict['slackThetaRem'], dims=None) SS.setELBOTerm('gammalnThetaRem', Mdict['gammalnThetaRem'].sum(), dims=None) if doPrecompMergeEntropy: if mPairIDs is None: raise NotImplementedError("TODO: all pairs for merges") m_Hresp = calcHrespForSpecificMergePairs(LP, Dslice, mPairIDs) if m_Hresp is not None: SS.setMergeTerm('Hresp', m_Hresp, dims=('M')) m_sumLogPi = np.zeros(M) m_gammalnTheta = np.zeros(M) m_slackTheta = np.zeros(M) for m, (kA, kB) in enumerate(mPairIDs): theta_vec = LP['theta'][:, kA] + LP['theta'][:, kB] ElogPi_vec = digamma(theta_vec) - LP['digammaSumTheta'] m_gammalnTheta[m] = np.sum(gammaln(theta_vec)) m_sumLogPi[m] = np.sum(ElogPi_vec) # slack = (Ndm - theta_dm) * E[log pi_dm] slack_vec = ElogPi_vec slack_vec *= -1 * (alphaEbeta[kA] + alphaEbeta[kB]) m_slackTheta[m] = np.sum(slack_vec) SS.setMergeTerm('gammalnTheta', m_gammalnTheta, dims=('M')) SS.setMergeTerm('sumLogPi', m_sumLogPi, dims=('M')) SS.setMergeTerm('slackTheta', m_slackTheta, dims=('M')) # Uncomment this for verification of merge calculations. # for (kA, kB) in mPairIDs: # self.verifySSForMergePair(Data, SS, LP, kA, kB) # .... end merge computations # Selection terms (computes doc-topic correlation) if mergePairSelection is not None: if mergePairSelection.count('corr') > 0: Tmat = LP['DocTopicCount'] SS.setSelectionTerm('DocTopicPairMat', np.dot(Tmat.T, Tmat), dims=('K', 'K')) SS.setSelectionTerm('DocTopicSum', np.sum(Tmat, axis=0), dims='K') if trackDocUsage: # Track num of times a topic appears nontrivially in a doc DocUsage = np.sum(LP['DocTopicCount'] > 0.01, axis=0) SS.setSelectionTerm('DocUsageCount', DocUsage, dims='K') Pi = LP['theta'] / LP['theta'].sum(axis=1)[:, np.newaxis] SumPi = np.sum(Pi, axis=0) SS.setSelectionTerm('SumPi', SumPi, dims='K') return SS