def sg_hinge(tensor, opt): assert opt.target is not None, 'target is mandatory.' # default margin opt += tf.sg_opt(margin=1) # reshape target shape = tensor.get_shape().as_list() broadcast_shape = [-1] + [1] * (len(shape) - 2) + [shape[-1]] target = tf.cast(tf.reshape(opt.target, broadcast_shape), tf.sg_floatx) # hinge loss out = tf.identity(tf.maximum(opt.margin - target * tensor, 0), 'hinge') # add summary tf.sg_summary_loss(out) return out
def iou(self, boxes1, boxes2): """ Note: Modified from https://github.com/nilboy/tensorflow-yolo/blob/python2.7/yolo/net/yolo_net.py calculate ious Args: boxes1: 4-D tensor [CELL_SIZE, CELL_SIZE, BOXES_PER_CELL, 4] ====> (x_center, y_center, w, h) boxes2: 1-D tensor [4] ===> (x_center, y_center, w, h) Return: iou: 3-D tensor [CELL_SIZE, CELL_SIZE, BOXES_PER_CELL] """ boxes1 = tf.stack([ boxes1[:, 0] - boxes1[:, 2] / 2, boxes1[:, 1] - boxes1[:, 3] / 2, boxes1[:, 0] + boxes1[:, 2] / 2, boxes1[:, 1] + boxes1[:, 3] / 2 ]) boxes2 = tf.stack([ boxes2[:, 0] - boxes2[:, 2] / 2, boxes2[:, 1] - boxes2[:, 3] / 2, boxes2[:, 0] + boxes2[:, 2] / 2, boxes2[:, 1] + boxes2[:, 3] / 2 ]) #calculate the left up point lu = tf.maximum(boxes1[0:2], boxes2[0:2]) rd = tf.minimum(boxes1[2:], boxes2[2:]) #intersection intersection = rd - lu inter_square = tf.multiply(intersection[0], intersection[1]) mask = tf.cast(intersection[0] > 0, tf.float32) * tf.cast( intersection[1] > 0, tf.float32) inter_square = tf.multiply(mask, inter_square) #calculate the boxs1 square and boxs2 square square1 = tf.multiply((boxes1[2] - boxes1[0]), (boxes1[3] - boxes1[1])) square2 = tf.multiply((boxes2[2] - boxes2[0]), (boxes2[3] - boxes2[1])) return inter_square / (square1 + square2 - inter_square + 1e-6), inter_square
def sg_hinge(tensor, opt): r"""Returns hinge loss between `tensor` and `target`. Args: tensor: A `Tensor`. opt: target: A `Tensor`. Labels. margin: An int. Maximum margin. Default is 1. name: A `string`. A name to display in the tensor board web UI. Returns: A `Tensor`. For example, ``` tensor = [[30, 10, 40], [13, 30, 42]] target = [[0, 0, 1], [0, 1, 0]] tensor.sg_hinge(target=target, one_hot=True) => [[ 1. 1. 0.] [ 1. 0. 1.]] ``` """ assert opt.target is not None, 'target is mandatory.' # default margin opt += tf.sg_opt(margin=1) # reshape target shape = tensor.get_shape().as_list() broadcast_shape = [-1] + [1] * (len(shape) - 2) + [shape[-1]] target = tf.cast(tf.reshape(opt.target, broadcast_shape), tf.sg_floatx) # hinge loss out = tf.identity(tf.maximum(opt.margin - target * tensor, 0), 'hinge') # add summary tf.sg_summary_loss(out, name=opt.name) return out
sample = gen.sg_flatten() nom = tf.matmul(sample, tf.transpose(sample, perm=[1, 0])) denom = tf.reduce_sum(tf.square(sample), reduction_indices=[1], keep_dims=True) pt = tf.square(nom / denom) pt -= tf.diag(tf.diag_part(pt)) pt = tf.reduce_sum(pt) / (batch_size * (batch_size - 1)) # # loss & train ops # # mean squared errors mse = tf.reduce_mean(tf.square(disc - xx), reduction_indices=[1, 2, 3]) mse_real, mse_fake = mse[:batch_size], mse[batch_size:] loss_disc = mse_real + tf.maximum(margin - mse_fake, 0) # discriminator loss loss_gen = mse_fake + pt * pt_weight # generator loss + PT regularizer train_disc = tf.sg_optim(loss_disc, lr=0.001, category='discriminator') # discriminator train ops train_gen = tf.sg_optim(loss_gen, lr=0.001, category='generator') # generator train ops # # add summary # tf.sg_summary_loss(tf.identity(loss_disc, name='disc')) tf.sg_summary_loss(tf.identity(loss_gen, name='gen')) tf.sg_summary_image(gen)
pt = tf.square(nom / denom) pt -= tf.diag(tf.diag_part(pt)) pt = tf.reduce_sum(pt) / (batch_size * (batch_size - 1)) # # loss & train ops # # mean squared errors mse_real = tf.reduce_mean(tf.square(disc_real - x), reduction_indices=[1, 2, 3]) mse_fake = tf.reduce_mean(tf.square(disc_fake - gen), reduction_indices=[1, 2, 3]) # discriminator loss loss_disc = mse_real + tf.maximum(margin - mse_fake, 0) # generator loss + PT regularizer loss_gen = mse_fake + pt * pt_weight train_disc = tf.sg_optim(loss_disc, lr=0.001, category='discriminator') # discriminator train ops train_gen = tf.sg_optim(loss_gen, lr=0.001, category='generator') # generator train ops # add summary tf.sg_summary_loss(loss_disc, name='disc') tf.sg_summary_loss(loss_gen, name='gen') # # training #
def train(self): ''' Network ''' batch_pred_feats, batch_pred_coords, batch_pred_confs, self.final_state = self.LSTM( 'lstm', self.x) iou_predict_truth, intersection = self.iou(batch_pred_coords, self.y[:, 0:4]) should_exist = I = tf.cast( tf.reduce_sum(self.y[:, 0:4], axis=1) > 0., tf.float32) no_I = tf.ones_like(I, dtype=tf.float32) - I object_loss = tf.nn.l2_loss( I * (batch_pred_confs - iou_predict_truth)) * self.object_scale noobject_loss = tf.nn.l2_loss( no_I * (batch_pred_confs - iou_predict_truth)) * self.noobject_scale p_sqrt_w = tf.sqrt( tf.minimum(1.0, tf.maximum(0.0, batch_pred_coords[:, 2]))) p_sqrt_h = tf.sqrt( tf.minimum(1.0, tf.maximum(0.0, batch_pred_coords[:, 3]))) sqrt_w = tf.sqrt(tf.abs(self.y[:, 2])) sqrt_h = tf.sqrt(tf.abs(self.y[:, 3])) loss = (tf.nn.l2_loss(I * (batch_pred_coords[:, 0] - self.y[:, 0])) + tf.nn.l2_loss(I * (batch_pred_coords[:, 1] - self.y[:, 1])) + tf.nn.l2_loss(I * (p_sqrt_w - sqrt_w)) + tf.nn.l2_loss(I * (p_sqrt_h - sqrt_h))) * self.coord_scale #max_iou = tf.nn.l2_loss(I*(tf.ones_like(iou_predict_truth, dtype=tf.float32) - iou_predict_truth)) total_loss = loss + object_loss + noobject_loss #+ max_iou ''' Optimizer ''' optimizer = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize( total_loss) # Adam Optimizer ''' Summary for tensorboard analysis ''' dataset_loss = -1 dataset_loss_best = 100 test_writer = tf.summary.FileWriter('summary/test') tf.summary.scalar('dataset_loss', dataset_loss) summary_op = tf.summary.merge_all() ''' Initializing the variables ''' self.saver = tf.train.Saver() batch_states = np.zeros((self.batchsize, 2 * self.len_vec)) # TODO: make this a command line argument, etc. # training set loader batch_loader = BatchLoader( "./DATA/TRAINING/", seq_len=self.nsteps, batch_size=self.batchsize, step_size=1, folders_to_use=[ "GOPR0005", "GOPR0006", "GOPR0008", "GOPR0008_2", "GOPR0009", "GOPR0009_2", "GOPR0010", "GOPR0011", "GOPR0012", "GOPR0013", "GOPR0014", "GOPR0015", "GOPR0016", "MVI_8607", "MVI_8609", "MVI_8610", "MVI_8612", "MVI_8614", "MVI_8615", "MVI_8616" ]) validation_set_loader = BatchLoader( "./DATA/VALID/", seq_len=self.nsteps, batch_size=self.batchsize, step_size=1, folders_to_use=[ "bbd_2017__2017-01-09-21-40-02_cam_flimage_raw", "bbd_2017__2017-01-09-21-44-31_cam_flimage_raw", "bbd_2017__2017-01-09-21-48-46_cam_flimage_raw", "bbd_2017__2017-01-10-16-07-49_cam_flimage_raw", "bbd_2017__2017-01-10-16-21-01_cam_flimage_raw", "bbd_2017__2017-01-10-16-31-57_cam_flimage_raw", "bbd_2017__2017-01-10-21-43-03_cam_flimage_raw", "bbd_2017__2017-01-11-20-21-32_cam_flimage_raw", "bbd_2017__2017-01-11-21-02-37_cam_flimage_raw" ]) print("%d available training batches" % len(batch_loader.batches)) print("%d available validation batches" % len(validation_set_loader.batches)) ''' Launch the graph ''' with tf.Session() as sess: if self.restore_weights == True and os.path.isfile( self.rolo_current_save + ".index"): # sess.run(init) tf.sg_init(sess) self.saver.restore(sess, self.rolo_current_save) print("Weight loaded, finetuning") else: # sess.run(init) tf.sg_init(sess) print("Training from scratch") epoch_loss = [] for self.iter_id in range(self.n_iters): ''' Load training data & ground truth ''' batch_id = self.iter_id - self.batch_offset batch_xs, batch_ys, _ = batch_loader.load_batch(batch_id) ''' Update weights by back-propagation ''' sess.run(optimizer, feed_dict={ self.x: batch_xs, self.y: batch_ys }) if self.iter_id % self.display_step == 0: ''' Calculate batch loss ''' batch_loss = sess.run(total_loss, feed_dict={ self.x: batch_xs, self.y: batch_ys }) epoch_loss.append(batch_loss) print("Total Batch loss for iteration %d: %.9f" % (self.iter_id, batch_loss)) if self.iter_id % self.display_step == 0: ''' Calculate batch loss ''' batch_loss = sess.run(loss, feed_dict={ self.x: batch_xs, self.y: batch_ys }) print( "Bounding box coord error loss for iteration %d: %.9f" % (self.iter_id, batch_loss)) if self.display_object_loss and self.iter_id % self.display_step == 0: ''' Calculate batch object loss ''' batch_o_loss = sess.run(object_loss, feed_dict={ self.x: batch_xs, self.y: batch_ys }) print("Object loss for iteration %d: %.9f" % (self.iter_id, batch_o_loss)) if self.display_object_loss and self.iter_id % self.display_step == 0: ''' Calculate batch object loss ''' batch_noo_loss = sess.run(noobject_loss, feed_dict={ self.x: batch_xs, self.y: batch_ys }) print("No Object loss for iteration %d: %.9f" % (self.iter_id, batch_noo_loss)) if self.iou_with_ground_truth and self.iter_id % self.display_step == 0: ''' Calculate batch object loss ''' batch_o_loss = sess.run(tf.reduce_mean(iou_predict_truth), feed_dict={ self.x: batch_xs, self.y: batch_ys }) print("Average IOU with ground for iteration %d: %.9f" % (self.iter_id, batch_o_loss)) if self.display_coords is True and self.iter_id % self.display_step == 0: ''' Caculate predicted coordinates ''' coords_predict = sess.run(batch_pred_coords, feed_dict={ self.x: batch_xs, self.y: batch_ys }) print("predicted coords:" + str(coords_predict[0])) print("ground truth coords:" + str(batch_ys[0])) ''' Save model ''' if self.iter_id % self.save_step == 1: self.saver.save(sess, self.rolo_current_save) print("\n Model saved in file: %s" % self.rolo_current_save) ''' Validation ''' if self.validate == True and self.iter_id % self.validate_step == 0 and self.iter_id > 0: # Run validation set dataset_loss = self.test(sess, total_loss, validation_set_loader, batch_pred_feats, batch_pred_coords, batch_pred_confs, self.final_state) ''' Early-stop regularization ''' if dataset_loss <= dataset_loss_best: dataset_loss_best = dataset_loss self.saver.save(sess, self.rolo_weights_file) print("\n Better Model saved in file: %s" % self.rolo_weights_file) ''' Write summary for tensorboard ''' summary = sess.run(summary_op, feed_dict={ self.x: batch_xs, self.y: batch_ys }) test_writer.add_summary(summary, self.iter_id) print("Average total loss %f" % np.mean(epoch_loss)) return