Пример #1
0
import sugartensor as tf
from data import SpeechCorpus, voca_size
from model import *


__author__ = '*****@*****.**'


# set log level to debug
tf.sg_verbosity(10)


#
# hyper parameters
#

batch_size = 16    # total batch size

#
# inputs
#

# corpus input tensor
data = SpeechCorpus(batch_size=batch_size * tf.sg_gpus())

# mfcc feature of audio
inputs = tf.split(data.mfcc, tf.sg_gpus(), axis=0)
# target sentence label
labels = tf.split(data.label, tf.sg_gpus(), axis=0)

# sequence length except zero-padding
Пример #2
0
import sugartensor as tf
from data import SpeechCorpus, voca_size, index2str
from model import *
import numpy as np
from tqdm import tqdm
from attacks import FastGradientMethod
import pickle

##################################################
## Edited by Jade Huang
##################################################

__author__ = '*****@*****.**'

# set log level to debug
tf.sg_verbosity(10)

# command line argument for set_name
tf.sg_arg_def(set=('valid',
                   "'train', 'valid', or 'test'.  The default is 'valid'"))
tf.sg_arg_def(frac=(
    1.0,
    "test fraction ratio to whole data set. The default is 1.0(=whole set)"))

#
# hyper parameters
#

# batch size
batch_size = 16
Пример #3
0
import tensorflow as tf
import sugartensor as sg
from input_data import Surv
from model import ResNet

sg.sg_verbosity(10)
batch_size = 32

data = Surv(batch_size=32)

input_ = data.data
label = data.label

model = ResNet()
inference_fn = model.inference

# logit = model.inference(x)

def my_loss(input_, labels, inference_fn, num_gpu=1):
    assert num_gpu >= 0
    tower_loss = []

    input_batch = tf.split(input_, num_gpu, axis=0)
    label_batch = tf.split(labels, num_gpu, axis=0)

    for i in range(num_gpu):
        with tf.device('/gpu:%d' % i):
            with tf.name_scope('gpu_%d' % i):
                reuse = False if i == 0 else True
                logit = inference_fn(input_batch[i], reuse=reuse)
Пример #4
0
import sugartensor as tf
from model import *
from tw_data import TwitData

__author__ = '*****@*****.**'

# set log level to debug
tf.sg_verbosity(1)

#
# hyper parameters
#

batch_size = 8  # batch size

#
# inputs
#

data = TwitData(batch_size=batch_size)

# source, target sentence
x, y = data.source, data.target
# shift target for training source
y_in = tf.concat([tf.zeros((batch_size, 1), tf.sg_intx), y[:, :-1]], axis=1)
# vocabulary size
voca_size = data.voca_size

# make embedding matrix for source and target
emb_x = tf.sg_emb(name='emb_x', voca_size=voca_size, dim=latent_dim)
emb_y = tf.sg_emb(name='emb_y', voca_size=voca_size, dim=latent_dim)
Пример #5
0
def main(argv):
    # set log level to debug
    tf.sg_verbosity(10)

    #
    # hyper parameters
    #

    size = 160, 147
    batch_size = 1  # batch size

    #
    # inputs
    #

    pngName = argv

    png = tf.read_file(pngName)
    #png.thumbnail(size, Image.ANTIALIAS)
    #png = tf.resize(png1, (14,14))
    myPNG = tf.image.decode_png(png)

    y = convert_image(pngName)
    x = tf.reshape(y, [1, 28, 28, 1])

    print(x)
    # corrupted image
    x_small = tf.image.resize_bicubic(x, (14, 14))
    x_bicubic = tf.image.resize_bicubic(x_small, (28, 28)).sg_squeeze()
    x_nearest = tf.image.resize_images(
        x_small, (28, 28),
        tf.image.ResizeMethod.NEAREST_NEIGHBOR).sg_squeeze()

    #
    # create generator
    #
    # I've used ESPCN scheme
    # http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
    #

    # generator network
    with tf.sg_context(name='generator', act='relu', bn=True):
        gen = (x.sg_conv(dim=32).sg_conv().sg_conv(
            dim=4, act='sigmoid',
            bn=False).sg_periodic_shuffle(factor=2).sg_squeeze())

    #
    # run generator
    #
    fileName = "inPython.png"
    fig_name = "genImages/" + fileName
    #fig_name2 = 'asset/train/sample2.png'

    print("start")
    with tf.Session() as sess:
        with tf.sg_queue_context(sess):

            tf.sg_init(sess)

            # restore parameters
            saver = tf.train.Saver()
            #saver.restore(sess, tf.train.latest_checkpoint('asset/train/ckpt'))
            saver.restore(
                sess, tf.train.latest_checkpoint('python/asset/train/ckpt'))

            # run generator
            gt, low, bicubic, sr = sess.run(
                [x.sg_squeeze(), x_nearest, x_bicubic, gen])

            # plot result
            #sr[0].thumbnail(size, Image.ANTIALIAS)
            plt.figure(figsize=(1, 1))
            #plt.set_axis_off()
            hr = plt.imshow(sr[0], 'gray')
            plt.axis('tight')
            plt.axis('off')
            #ax.set_axis_off()
    #ax.thumbnail(size, Image.ANTIALIAS)

    #plt.savefig(fig_name,bbox_inches='tight',pad_inches=0,dpi=600)
        plt.savefig(fig_name, dpi=600)
        #tf.sg_info('Sample image saved to "%s"' % fig_name)
        plt.close()

        ##print (type (sr[0]))
        ##sourceImage = Image.fromarray(np.uint8(sr[0])

    print("done")