Пример #1
0
def test_pde_check_kernels(ctx_factory, knl_info, order=5):
    dim = knl_info.kernel.dim
    tctx = t.ToyContext(ctx_factory(), knl_info.kernel,
            extra_source_kwargs=knl_info.extra_kwargs)

    pt_src = t.PointSources(
            tctx,
            np.random.rand(dim, 50) - 0.5,
            np.ones(50))

    from pytools.convergence import EOCRecorder
    from sumpy.point_calculus import CalculusPatch
    eoc_rec = EOCRecorder()

    for h in [0.1, 0.05, 0.025]:
        cp = CalculusPatch(np.array([1, 0, 0])[:dim], h=h, order=order)
        pot = pt_src.eval(cp.points)

        pde = knl_info.pde_func(cp, pot)

        err = la.norm(pde)
        eoc_rec.add_data_point(h, err)

    print(eoc_rec)
    assert eoc_rec.order_estimate() > order - knl_info.nderivs + 1 - 0.1
def test_toy_p2e2p(src, ctr, tgt, expn_func, expected):
    src = src.reshape(3, -1)
    tgt = tgt.reshape(3, -1)

    rtol = 1e-2
    if not 0 <= expected < 1 / (1 + rtol):
        raise ValueError()

    from sumpy.kernel import LaplaceKernel
    ctx = l3d.InterpretedToyContext(LaplaceKernel(3),
                                    l3d.L3DMultipoleExpansion,
                                    l3d.L3DLocalExpansion)

    src_pot = t.PointSources(ctx, src, weights=[1])
    pot_actual = src_pot.eval(tgt)

    errors = []

    for order in ORDERS:
        expn = expn_func(src_pot, ctr, order=order)
        pot_p2e2p = expn.eval(tgt)
        errors.append(np.abs(pot_actual - pot_p2e2p))

    conv_factor = compute_approx_convergence_factor(ORDERS, errors)

    assert conv_factor < expected * (1 + rtol)
Пример #3
0
def main():
    from sumpy.kernel import (  # noqa: F401
        YukawaKernel, HelmholtzKernel, LaplaceKernel)
    tctx = t.ToyContext(
        cl.create_some_context(),
        #LaplaceKernel(2),
        YukawaKernel(2),
        extra_kernel_kwargs={"lam": 5},
        #HelmholtzKernel(2), extra_kernel_kwargs={"k": 0.3},
    )

    pt_src = t.PointSources(tctx, np.random.rand(2, 50) - 0.5, np.ones(50))

    fp = FieldPlotter([3, 0], extent=8)

    if 0 and plt is not None:
        t.logplot(fp, pt_src, cmap="jet")
        plt.colorbar()
        plt.show()

    mexp = t.multipole_expand(pt_src, [0, 0], 5)
    mexp2 = t.multipole_expand(mexp, [0, 0.25])  # noqa: F841
    lexp = t.local_expand(mexp, [3, 0])
    lexp2 = t.local_expand(lexp, [3, 1], 3)

    #diff = mexp - pt_src
    #diff = mexp2 - pt_src
    diff = lexp2 - pt_src

    print(t.l_inf(diff, 1.2, center=lexp2.center))
    if 1 and plt is not None:
        t.logplot(fp, diff, cmap="jet", vmin=-3, vmax=0)
        plt.colorbar()
        plt.show()
Пример #4
0
def m2l_experiment(param):
    from sumpy.kernel import LaplaceKernel
    ctx = l3d.InterpretedToyContext(LaplaceKernel(3),
                                    l3d.L3DMultipoleExpansion,
                                    l3d.L3DLocalExpansion)

    assert param.r / param.rho < 1

    mpole_center_dist = param.R + param.rho

    sources = param.r * SPHERE_SAMPLE
    sources[:, 2] += mpole_center_dist

    origin = np.zeros(3)
    mpole_center = np.array([0., 0., mpole_center_dist])
    local_centers = BALL_SAMPLE * param.R

    error = 0

    fmm_order = param.p
    qbx_order = param.q

    for src in sources:
        src = src.reshape(3, -1)

        src_pot = t.PointSources(ctx, src, weights=[1])
        mpole_pot = t.multipole_expand(src_pot, mpole_center, order=fmm_order)
        local_pot = t.local_expand(mpole_pot, origin, order=fmm_order)

        for local_center in local_centers:
            targets = ((param.R - la.norm(local_center)) * SPHERE_SAMPLE +
                       local_center)
            assert (la.norm(targets, axis=1) <= param.R * (1 + 1e-5)).all()

            if qbx_order == np.inf:
                actual = src_pot.eval(targets.T) - local_pot.eval(targets.T)
            else:
                qbx_src_pot = t.local_expand(src_pot,
                                             local_center,
                                             order=qbx_order)
                qbx_local_pot = t.local_expand(local_pot,
                                               local_center,
                                               order=qbx_order)
                diff = qbx_src_pot.with_coeffs(qbx_src_pot.coeffs -
                                               qbx_local_pot.coeffs)
                actual = diff.eval(targets.T)

            error = max(error, np.max(np.abs(actual)))

    return Result(param.R, param.r, param.rho, param.ratio, param.p, param.q,
                  error)
Пример #5
0
def l2p_experiment(param):
    from sumpy.kernel import LaplaceKernel
    ctx = l3d.InterpretedToyContext(LaplaceKernel(3),
                                    l3d.L3DMultipoleExpansion,
                                    l3d.L3DLocalExpansion)

    assert param.r / param.rho < 1

    origin = np.zeros(3)

    source_loc = np.array([0., 0., param.rho])
    local_centers = BALL_SAMPLE * param.r

    fmm_order = param.p
    qbx_order = param.q

    src_pot = t.PointSources(ctx, source_loc.reshape(3, -1), weights=[1])
    local_pot = t.local_expand(src_pot, origin, order=fmm_order)

    error = 0

    for ctr in local_centers:
        targets = (param.r - la.norm(ctr)) * SPHERE_SAMPLE + ctr
        assert (la.norm(targets, axis=1) <= param.r * (1 + 1e-5)).all()

        if qbx_order == np.inf:
            actual = src_pot.eval(targets.T) - local_pot.eval(targets.T)
        else:
            qbx_src_pot = t.local_expand(src_pot, ctr, order=qbx_order)
            qbx_local_pot = t.local_expand(local_pot, ctr, order=qbx_order)
            diff = qbx_src_pot.with_coeffs(qbx_src_pot.coeffs -
                                           qbx_local_pot.coeffs)
            actual = diff.eval(targets.T)

        error = max(error, np.max(np.abs(actual)))

    return Result(param.R, param.r, param.rho, param.ratio, param.p, param.q,
                  error)
Пример #6
0
    if not 0 <= case.conv_factor <= 1:
        raise ValueError("convergence factor not in valid range: %e" %
                         case.conv_factor)

    from sumpy.expansion.local import VolumeTaylorLocalExpansion
    from sumpy.expansion.multipole import VolumeTaylorMultipoleExpansion

    cl_ctx = ctx_factory()
    ctx = t.ToyContext(cl_ctx, LaplaceKernel(dim),
                       VolumeTaylorMultipoleExpansion,
                       VolumeTaylorLocalExpansion)

    errors = []

    src_pot = t.PointSources(ctx, src, weights=np.array([1.]))
    pot_actual = src_pot.eval(tgt).item()

    for order in ORDERS_P2E2E2P:
        expn = case.expansion1(src_pot, case.center1, order=order)
        expn2 = case.expansion2(expn, case.center2, order=order)
        pot_p2e2e2p = expn2.eval(tgt).item()
        errors.append(np.abs(pot_actual - pot_p2e2e2p))

    conv_factor = approx_convergence_factor(1 + np.array(ORDERS_P2E2E2P),
                                            errors)
    assert conv_factor <= min(1, case.conv_factor * (1 + RTOL_P2E2E2P)), \
        (conv_factor, case.conv_factor * (1 + RTOL_P2E2E2P))


def test_cse_matvec():