def sunhis2initial(hisfile,icfile): """ Main function """ print '#####\nCreating initial condition file (%s) from history file (%s)...'%(icfile,hisfile) # Load the history file sunhis = Spatial(hisfile, tstep=-1, klayer=[-99]) # Load the initial condition object timeic = datetime.strftime(sunhis.time[-1],'%Y%m%d.%H%M%S') sunic = InitialCond(hisfile,timeic) # Load the last time step into each variable sunic.h = sunhis.loadData(variable='eta').reshape((1,sunic.h.shape)) sunic.T = sunhis.loadData(variable='temp').reshape((1,)+sunic.T.shape) sunic.S = sunhis.loadData(variable='salt').reshape((1,)+sunic.S.shape) sunic.uc = sunhis.loadData(variable='uc').reshape((1,)+sunic.uc.shape) sunic.vc = sunhis.loadData(variable='vc').reshape((1,)+sunic.vc.shape) print sunic.h.shape print sunic.T.shape # Load the age if sunhis.hasVar('agec'): sunic.agec = sunhis.loadData(variable='agec').reshape((1,)+sunic.agec.shape) sunic.agealpha = sunhis.loadData(variable='agealpha').reshape((1,)+sunic.agealpha.shape) # Write to the output file sunic.writeNC(icfile)
def _dumpic(self): """ Dump initial condition plots For each variable (uc,vc,T,S,eta): - surface plot - seabed plot """ varnames = ['uc','vc','temp','salt','eta'] sun = Spatial(self.suntanspath+'/'+self.icfile,klayer=[0]) # Plot the surface variables for vv in varnames: h=plt.figure() sun.variable=vv sun.loadData() sun.clim = [sun.data.min(),sun.data.max()] sun.plot() outfile = '%s/IC_%s_surface.png'%(self.plotdir,vv) sun.savefig(outfile) del h # Plot the seabed variables sun.klayer=[-1] for vv in varnames: h=plt.figure() sun.variable=vv sun.loadData() sun.clim = [sun.data.min(),sun.data.max()] sun.plot() outfile = '%s/IC_%s_seabed.png'%(self.plotdir,vv) sun.savefig(outfile) del h
def sunhis2initial(hisfile, icfile): """ Main function """ print '#####\nCreating initial condition file (%s) from history file (%s)...' % ( icfile, hisfile) # Load the history file sunhis = Spatial(hisfile, tstep=-1, klayer=[-99]) # Load the initial condition object timeic = datetime.strftime(sunhis.time[-1], '%Y%m%d.%H%M%S') sunic = InitialCond(hisfile, timeic) # Load the last time step into each variable sunic.h = sunhis.loadData(variable='eta').reshape((1, sunic.h.shape)) sunic.T = sunhis.loadData(variable='temp').reshape((1, ) + sunic.T.shape) sunic.S = sunhis.loadData(variable='salt').reshape((1, ) + sunic.S.shape) sunic.uc = sunhis.loadData(variable='uc').reshape((1, ) + sunic.uc.shape) sunic.vc = sunhis.loadData(variable='vc').reshape((1, ) + sunic.vc.shape) print sunic.h.shape print sunic.T.shape # Load the age if sunhis.hasVar('agec'): sunic.agec = sunhis.loadData(variable='agec').reshape((1, ) + sunic.agec.shape) sunic.agealpha = sunhis.loadData( variable='agealpha').reshape((1, ) + sunic.agealpha.shape) # Write to the output file sunic.writeNC(icfile)
def _dumpic(self): """ Dump initial condition plots For each variable (uc,vc,T,S,eta): - surface plot - seabed plot """ varnames = ['uc', 'vc', 'temp', 'salt', 'eta'] sun = Spatial(self.suntanspath + '/' + self.icfile, klayer=[0]) # Plot the surface variables for vv in varnames: h = plt.figure() sun.variable = vv sun.loadData() sun.clim = [sun.data.min(), sun.data.max()] sun.plot() outfile = '%s/IC_%s_surface.png' % (self.plotdir, vv) sun.savefig(outfile) del h # Plot the seabed variables sun.klayer = [-1] for vv in varnames: h = plt.figure() sun.variable = vv sun.loadData() sun.clim = [sun.data.min(), sun.data.max()] sun.plot() outfile = '%s/IC_%s_seabed.png' % (self.plotdir, vv) sun.savefig(outfile) del h
def loadData(self, variable=None): """ Overloaded loadData function - updates the unstructured grid object """ Spatial.loadData(self, variable=variable) if self.is3D: self.data=np.ravel(self.data[self.mask3D]) else: self.data=np.ravel(self.data) self.ug.cell_data.scalars = self.data self.ug.cell_data.scalars.name = 'suntans_scalar' self.ug.modified()
def loadData(self): """ Overloaded loadData function - updates the unstructured grid object """ Spatial.loadData(self) if self.is3D: self.data=np.ravel(self.data[self.mask3D]) else: self.data=np.ravel(self.data) self.ug.cell_data.scalars = self.data self.ug.cell_data.scalars.name = 'suntans_scalar' self.ug.modified()
def river_discharge(ncfile,shpfiles): """ Calculates the river flux of all type-2 boundaries located with each polygon specified with a shpfile polygon """ # Load the spatial object sun = Spatial(ncfile,klayer=[-99]) # Indentify the river cells ind = np.argwhere(sun.mark==2).ravel() #sun.j = ind # Calculate the mask region if type(shpfiles) != type([]): shpfiles = [shpfiles] masks = [] polynames = [] for shpfile in shpfiles: mask, maskpoly = maskShpPoly(sun.xe[ind],sun.ye[ind],shpfile) masks.append(mask) polynames.append(os.path.splitext(os.path.basename(shpfile))[0]) # Create a dictionary with output info data={} for poly in polynames: data.update({poly:{'Q_r':np.zeros((sun.Nt,)),'time':sun.time}}) print 'Loading the data...' #U = sun.loadData(variable='U_F') sun.tstep = range(sun.Nt) U = np.zeros((sun.Nt,sun.Nkmax,ind.shape[0])) for tt in range(sun.Nt): sun.tstep = tt tmp = sun.loadData(variable='U_F') U[tt,...] = tmp[:,ind] print '\t%d of %d...'%(tt,sun.Nt) for mask,poly in zip(masks,polynames): tmp_dA = np.sum( np.sum(U*mask,axis=-1), axis=-1) data[poly]['Q_r']=tmp_dA return data
def area_integrate(ncfile,varnames,shpfiles): """ Area integrate a suntans variable for all time in the domain specified with a shpfile polygon """ # Use numexpr to try and speed things up import numexpr as ne # Load the spatial object sun = Spatial(ncfile,klayer=[-99]) Ac = sun.Ac # Calculate the mask region if type(shpfiles) != type([]): shpfiles = [shpfiles] masks = [] polynames = [] for shpfile in shpfiles: mask, maskpoly = maskShpPoly(sun.xv,sun.yv,shpfile) masks.append(mask) polynames.append(os.path.splitext(os.path.basename(shpfile))[0]) # Create a dictionary with output info data={} for poly in polynames: data.update({poly:{'V':np.zeros((sun.Nt,)),'time':sun.time}}) for varname in varnames: data[poly].update({varname:np.zeros((sun.Nt,))}) sun.tstep = range(sun.Nt) for varname in varnames: print 'Area integrating varibles: %s ...'%(varname) tmp = sun.loadData(variable=varname) for mask,poly in zip(masks,polynames): tmp_dA = ne.evaluate("sum(tmp*Ac*mask,axis=1)") data[poly][varname]=tmp_dA return data
def energy_budget(energyfile,polyfile,trange): """ # Area-integrate the energy terms """ varnames = ['KEz','PEz','uP','uKE','uPE','ueta','W_work','B_flux','diss'] # Load the energy file as a suntans object sun = Spatial(energyfile) # Create the mask mask,maskpoly = maskShpPoly(sun.xv,sun.yv,polyfile) # Initialise the output dictionary tstep = range(0,sun.Nt)[trange[0]:trange[1]] nt = len(tstep) budget ={} for vv in varnames: budget.update({vv:np.zeros((nt,))}) for ii,tt in enumerate(tstep): print 'Area-integrating step: %d of %d...'%(ii,tstep[-1]) for vv in varnames: sun.tstep=[tt] data = sun.loadData(variable=vv) budget[vv][ii],areatotal = sun.areaint(data,mask) budget.update({'time':sun.time[tstep]}) # Calculate the time-rate of change of KE and PE dt = sun.timeraw[1]-sun.timeraw[0] budget.update({'dKE_dt':np.zeros((nt,))}) budget.update({'dPE_dt':np.zeros((nt,))}) budget['dKE_dt'][1::] = (budget['KEz'][1::]-budget['KEz'][0:-1])/dt budget['dPE_dt'][1::] = (budget['PEz'][1::]-budget['PEz'][0:-1])/dt return budget
def suntans2ic(self,hisfile,setUV=False,seth=False): """ Uses data from another suntans file as initial conditions Data needs to be on the same grid """ # Load the history file sunhis = Spatial(hisfile, tstep=-1, klayer=[-99]) # Set the time step to grab from the history file #... tstep = sunhis.getTstep(self.time,self.time) sunhis.tstep = [tstep[0]] print 'Setting the intial condition with time step: %s\nfrom the file:%s'\ %(datetime.strftime(sunhis.time[tstep[0]],\ '%Y-%m-%d %H-%M-%S'),hisfile) # Npw grab each variable and save in the IC object if seth: self.h = sunhis.loadData(variable='eta').reshape((1,self.h.shape)) if sunhis.hasVar('temp'): self.T = sunhis.loadData(variable='temp').reshape((1,)+self.T.shape) if sunhis.hasVar('salt'): self.S = sunhis.loadData(variable='salt').reshape((1,)+self.S.shape) if setUV: self.uc = sunhis.loadData(variable='uc').reshape((1,)+self.uc.shape) self.vc = sunhis.loadData(variable='vc').reshape((1,)+self.vc.shape) # Load the age if sunhis.hasVar('agec'): self.agec = sunhis.loadData(variable='agec').reshape((1,)+self.agec.shape) self.agealpha = sunhis.loadData(variable='agealpha').reshape((1,)+self.agealpha.shape) print 'Done setting initial condition data from file.'
wroms = np.load("calcs/mask_bayshelf_weights_radial.npz")["wroms"] wromsu = wroms[:, 1:] # don't want to interpolate this wromsv = wroms[1:, :] etablend = np.empty_like(gridblend.x_rho) # Read in SUNTANS output for File in Files: # klayer = 0 is surface, tstep=-99 reads in all time steps # Do u, v, eta sun = Spatial(File, klayer=2, tstep=-99, variable="eta") # , clim=clim) # sun = Spatial(File, klayer=0, tstep=-99, variable='eta')#, clim=clim) datesbay = sun.time # get dates available in file eta = sun.loadData() # Loop through times in bay file for i, date in enumerate(datesbay): # Find the same time from the shelf model output # Assumes that there is a time in the shelf model that perfectly aligns with the # times in the bay model at some point tindshelf = find(datesshelf == date) print date # pdb.set_trace() if not find(datesshelf == date): # if a shelf time doesn't align, don't use this bay model output continue # have to do u and v by time step for some reason u = Spatial(File, klayer=["surface"], tstep=i, variable="uc").loadData()
def suntans2untrim(ncfile, outfile, tstart, tend, grdfile=None): """ Converts a suntans averages netcdf file into untrim format for use in particle tracking """ #### # Step 1: Load the suntans data object #### sun = Spatial(ncfile, klayer=[-99]) # Calculate some other variables sun.de = sun.get_edgevar(sun.dv, method='min') sun.mark[sun.mark == 5] = 0 sun.mark[sun.mark == 3] = 2 sun.facemark = np.zeros((sun.Nc, ), dtype=np.int) # Update the grad variable from the ascii grid file if supplied if not grdfile == None: print('Updating grid with ascii values...') grd = Grid(grdfile) sun.grad = grd.grad[:, ::-1] ### # Step 2: Write the grid variables to a netcdf file ### nc = Dataset(outfile, 'w', format='NETCDF4_CLASSIC') # Global variable nc.Description = 'UnTRIM history file converted from SUNTANS output' # Write the dimensions for dd in list(untrim_griddims.keys()): if dd == 'time': nc.createDimension(untrim_griddims[dd], 0) elif dd == 'numsides': nc.createDimension(untrim_griddims[dd], sun.maxfaces) else: nc.createDimension(untrim_griddims[dd], sun[dd]) for dd in other_dims: nc.createDimension(dd, other_dims[dd]) ### # Step 3: Initialize all of the grid variables ### def create_nc_var(name, dimensions, attdict,data=None, \ dtype='f8',zlib=False,complevel=0,fill_value=999999.0): tmp=nc.createVariable(name, dtype, dimensions,\ zlib=zlib,complevel=complevel,fill_value=fill_value) for aa in list(attdict.keys()): tmp.setncattr(aa, attdict[aa]) if not data == None: nc.variables[name][:] = data # Make sure the masked cells have a value of -1 mask = sun['cells'].mask.copy() sun['cells'][mask] = FILLVALUE sun['face'][mask] = FILLVALUE for vv in list(untrim_gridvars.keys()): vname = untrim_gridvars[vv] print('Writing grid variable %s (%s)...' % (vname, vv)) if vv == 'time': continue # add dz_min attribute to z_r variable if vv == 'z_r': ugrid[vname]['attributes'].update({'dz_min': 1e-5}) #sun[vv][:]=sun[vv][::-1] sun[vv][:] = sun['z_w'][0:-1][::-1] # Reverse the order of grad(???) if vv == 'grad': sun[vv][:] = sun[vv][:, ::-1] ## Fix one-based indexing #if vv in ['cells','edges','grad']: # mask = sun[vv][:]==-1 # tmp = sun[vv][:]+1 # tmp[mask]=-1 # #sun[vv][:]=sun[vv][:]+1 # create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ # data=tmp,dtype=ugrid[vname]['dtype']) create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ data=sun[vv],dtype=ugrid[vname]['dtype']) # Initialize the two time variables vname = untrim_gridvars['time'] create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ dtype=ugrid[vname]['dtype']) vname = 'Mesh2_data_time_string' create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ dtype=ugrid[vname]['dtype']) ### # Step 4: Initialize all of the time-varying variables (but don't write) ### for vname in varnames: print('Creating variable %s...' % (vname)) create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ dtype=ugrid[vname]['dtype'],zlib=True,complevel=1,fill_value=999999.) ### # Step 5: Loop through all of the time steps and write the variables ### tsteps = sun.getTstep(tstart, tend) tdays = othertime.DaysSince(sun.time, basetime=datetime(1899, 12, 31)) for ii, tt in enumerate(tsteps): # Convert the time to the untrim formats timestr = datetime.strftime(sun.time[tt], '%Y-%m-%d %H:%M:%S') print('Writing data at time %s (%d of %d)...' % (timestr, tt, tsteps[-1])) #Write the time variables nc.variables['Mesh2_data_time'][ii] = tdays[ii] nc.variables['Mesh2_data_time_string'][:, ii] = timestr # Load each variable or calculate it and convert it to the untrim format sun.tstep = [tt] ### # Compute a few terms first eta = sun.loadData(variable='eta') U = sun.loadData(variable='U_F') dzz = sun.getdzz(eta) dzf = sun.getdzf(eta) vname = 'Mesh2_sea_surface_elevation' #print '\tVariable: %s...'%vname nc.variables[vname][:, ii] = eta vname = 'Mesh2_salinity_3d' #print '\tVariable: %s...'%vname tmp3d = sun.loadData(variable='salt') nc.variables[vname][:, :, ii] = tmp3d.swapaxes(0, 1)[:, ::-1] vname = 'Mesh2_vertical_diffusivity_3d' #print '\tVariable: %s...'%vname tmp3d = sun.loadData(variable='nu_v') nc.variables[vname][:, :, ii] = tmp3d.swapaxes(0, 1)[:, ::-1] vname = 'h_flow_avg' #print '\tVariable: %s...'%vname nc.variables[vname][:, :, ii] = U.swapaxes(0, 1)[:, ::-1] vname = 'v_flow_avg' #print '\tVariable: %s...'%vname tmp3d = sun.loadData(variable='w') * sun.Ac # m^3/s nc.variables[vname][:, :, ii] = tmp3d.swapaxes(0, 1)[:, ::-1] # Need to calculate a few terms for the other variables vname = 'Mesh2_edge_wet_area' #print '\tVariable: %s...'%vname #dzf = sun.loadData(variable='dzf') tmp3d = dzf * sun.df nc.variables[vname][:, :, ii] = tmp3d.swapaxes(0, 1)[:, ::-1] vname = 'Mesh2_face_water_volume' #print '\tVariable: %s...'%vname #dzz = sun.loadData(variable='dzz') tmp3d = dzz * sun.Ac nc.variables[vname][:, :, ii] = tmp3d.swapaxes(0, 1)[:, ::-1] vname = 'Mesh2_face_wet_area' #print '\tVariable: %s...'%vname tmp3d = np.repeat(sun.Ac[np.newaxis, ...], sun.Nkmax, axis=0) nc.variables[vname][:, :, ii] = tmp3d.swapaxes(0, 1)[:, ::-1] # UnTRIM references from bottom to top i.e. # k = 0 @ bed ; k = Nkmax-1 @ top vname = 'Mesh2_edge_bottom_layer' #print '\tVariable: %s...'%vname #tmp2d = sun.Nkmax-sun.Nke # zero based tmp2d = sun.Nkmax - sun.Nke + 1 # one based nc.variables[vname][:, ii] = tmp2d vname = 'Mesh2_edge_top_layer' #print '\tVariable: %s...'%vname etop = sun.loadData(variable='etop') #tmp2d = sun.Nkmax-etop-1 # zero based tmp2d = sun.Nkmax - etop # one based nc.variables[vname][:, ii] = tmp2d vname = 'Mesh2_face_bottom_layer' #print '\tVariable: %s...'%vname #tmp2d = sun.Nkmax-sun.Nk + 1 # zero based tmp2d = sun.Nkmax - sun.Nk # one based nc.variables[vname][:, ii] = tmp2d vname = 'Mesh2_face_top_layer' #print '\tVariable: %s...'%vname ctop = sun.loadData(variable='ctop') #tmp2d = sun.Nkmax-ctop-1 # zero based tmp2d = sun.Nkmax - ctop # one based nc.variables[vname][:, ii] = tmp2d print(72 * '#') print('\t Finished SUNTANS->UnTRIM conversion') print(72 * '#') # close the file nc.close()
""" Generates a series of animations """ from sunpy import Spatial import numpy as np import matplotlib.pyplot as plt runname='SFBay3D' ncfile = '%s/%s_0*.nc'%('data',runname) k = 1 # depth layer plt.figure() sun = Spatial(ncfile,klayer=[k],variable='salt') sun.tstep=np.arange(0,len(sun.time)) sun.loadData() sun.clim = [28.0,32.0] sun.animate(vector_overlay=False) sun.saveanim('plots/%s_salt.mov'%runname) sun.clim=None plt.figure() sun = Spatial(ncfile,klayer=[k],variable='uc') sun.tstep=np.arange(0,len(sun.time)) sun.loadData() sun.animate(vector_overlay=False) sun.saveanim('plots/%s_uc.mov'%runname) sun.clim=None plt.figure() sun = Spatial(ncfile,klayer=[k],variable='eta')
def suntans2untrim(ncfile,outfile,tstart,tend,grdfile=None): """ Converts a suntans averages netcdf file into untrim format for use in particle tracking """ #### # Step 1: Load the suntans data object #### sun = Spatial(ncfile,klayer=[-99]) # Calculate some other variables sun.de = sun.get_edgevar(sun.dv,method='min') sun.mark[sun.mark==5]=0 sun.mark[sun.mark==3]=2 sun.facemark = np.zeros((sun.Nc,),dtype=np.int) # Update the grad variable from the ascii grid file if supplied if not grdfile == None: print 'Updating grid with ascii values...' grd = Grid(grdfile) sun.grad = grd.grad[:,::-1] ### # Step 2: Write the grid variables to a netcdf file ### nc = Dataset(outfile,'w',format='NETCDF4_CLASSIC') # Global variable nc.Description = 'UnTRIM history file converted from SUNTANS output' # Write the dimensions for dd in untrim_griddims.keys(): if dd == 'time': nc.createDimension(untrim_griddims[dd],0) elif dd =='numsides': nc.createDimension(untrim_griddims[dd],sun.maxfaces) else: nc.createDimension(untrim_griddims[dd],sun[dd]) for dd in other_dims: nc.createDimension(dd,other_dims[dd]) ### # Step 3: Initialize all of the grid variables ### def create_nc_var(name, dimensions, attdict,data=None, \ dtype='f8',zlib=False,complevel=0,fill_value=999999.0): tmp=nc.createVariable(name, dtype, dimensions,\ zlib=zlib,complevel=complevel,fill_value=fill_value) for aa in attdict.keys(): tmp.setncattr(aa,attdict[aa]) if not data==None: nc.variables[name][:] = data # Make sure the masked cells have a value of -1 mask = sun['cells'].mask.copy() sun['cells'][mask]=FILLVALUE sun['face'][mask]=FILLVALUE for vv in untrim_gridvars.keys(): vname = untrim_gridvars[vv] print 'Writing grid variable %s (%s)...'%(vname,vv) if vv=='time': continue # add dz_min attribute to z_r variable if vv == 'z_r': ugrid[vname]['attributes'].update({'dz_min':1e-5}) #sun[vv][:]=sun[vv][::-1] sun[vv][:]=sun['z_w'][0:-1][::-1] # Reverse the order of grad(???) if vv=='grad': sun[vv][:]=sun[vv][:,::-1] ## Fix one-based indexing #if vv in ['cells','edges','grad']: # mask = sun[vv][:]==-1 # tmp = sun[vv][:]+1 # tmp[mask]=-1 # #sun[vv][:]=sun[vv][:]+1 # create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ # data=tmp,dtype=ugrid[vname]['dtype']) create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ data=sun[vv],dtype=ugrid[vname]['dtype']) # Initialize the two time variables vname=untrim_gridvars['time'] create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ dtype=ugrid[vname]['dtype']) vname = 'Mesh2_data_time_string' create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ dtype=ugrid[vname]['dtype']) ### # Step 4: Initialize all of the time-varying variables (but don't write) ### for vname in varnames: print 'Creating variable %s...'%(vname) create_nc_var(vname,ugrid[vname]['dimensions'],ugrid[vname]['attributes'],\ dtype=ugrid[vname]['dtype'],zlib=True,complevel=1,fill_value=999999.) ### # Step 5: Loop through all of the time steps and write the variables ### tsteps = sun.getTstep(tstart,tend) tdays = othertime.DaysSince(sun.time,basetime=datetime(1899,12,31)) for ii, tt in enumerate(tsteps): # Convert the time to the untrim formats timestr = datetime.strftime(sun.time[tt],'%Y-%m-%d %H:%M:%S') print 'Writing data at time %s (%d of %d)...'%(timestr,tt,tsteps[-1]) #Write the time variables nc.variables['Mesh2_data_time'][ii]=tdays[ii] nc.variables['Mesh2_data_time_string'][:,ii]=timestr # Load each variable or calculate it and convert it to the untrim format sun.tstep=[tt] ### # Compute a few terms first eta = sun.loadData(variable='eta' ) U = sun.loadData(variable='U_F' ) dzz = sun.getdzz(eta) dzf = sun.getdzf(eta) vname='Mesh2_sea_surface_elevation' #print '\tVariable: %s...'%vname nc.variables[vname][:,ii]=eta vname = 'Mesh2_salinity_3d' #print '\tVariable: %s...'%vname tmp3d = sun.loadData(variable='salt' ) nc.variables[vname][:,:,ii]=tmp3d.swapaxes(0,1)[:,::-1] vname = 'Mesh2_vertical_diffusivity_3d' #print '\tVariable: %s...'%vname tmp3d = sun.loadData(variable='nu_v' ) nc.variables[vname][:,:,ii]=tmp3d.swapaxes(0,1)[:,::-1] vname = 'h_flow_avg' #print '\tVariable: %s...'%vname nc.variables[vname][:,:,ii]=U.swapaxes(0,1)[:,::-1] vname = 'v_flow_avg' #print '\tVariable: %s...'%vname tmp3d = sun.loadData(variable='w' ) * sun.Ac # m^3/s nc.variables[vname][:,:,ii]=tmp3d.swapaxes(0,1)[:,::-1] # Need to calculate a few terms for the other variables vname = 'Mesh2_edge_wet_area' #print '\tVariable: %s...'%vname #dzf = sun.loadData(variable='dzf') tmp3d = dzf*sun.df nc.variables[vname][:,:,ii]=tmp3d.swapaxes(0,1)[:,::-1] vname = 'Mesh2_face_water_volume' #print '\tVariable: %s...'%vname #dzz = sun.loadData(variable='dzz') tmp3d = dzz*sun.Ac nc.variables[vname][:,:,ii]=tmp3d.swapaxes(0,1)[:,::-1] vname = 'Mesh2_face_wet_area' #print '\tVariable: %s...'%vname tmp3d = np.repeat(sun.Ac[np.newaxis,...],sun.Nkmax,axis=0) nc.variables[vname][:,:,ii]=tmp3d.swapaxes(0,1)[:,::-1] # UnTRIM references from bottom to top i.e. # k = 0 @ bed ; k = Nkmax-1 @ top vname = 'Mesh2_edge_bottom_layer' #print '\tVariable: %s...'%vname #tmp2d = sun.Nkmax-sun.Nke # zero based tmp2d = sun.Nkmax-sun.Nke+1 # one based nc.variables[vname][:,ii]=tmp2d vname = 'Mesh2_edge_top_layer' #print '\tVariable: %s...'%vname etop = sun.loadData(variable='etop') #tmp2d = sun.Nkmax-etop-1 # zero based tmp2d = sun.Nkmax-etop # one based nc.variables[vname][:,ii]=tmp2d vname = 'Mesh2_face_bottom_layer' #print '\tVariable: %s...'%vname #tmp2d = sun.Nkmax-sun.Nk + 1 # zero based tmp2d = sun.Nkmax-sun.Nk # one based nc.variables[vname][:,ii]=tmp2d vname = 'Mesh2_face_top_layer' #print '\tVariable: %s...'%vname ctop = sun.loadData(variable='ctop') #tmp2d = sun.Nkmax-ctop-1 # zero based tmp2d = sun.Nkmax-ctop # one based nc.variables[vname][:,ii]=tmp2d print 72*'#' print '\t Finished SUNTANS->UnTRIM conversion' print 72*'#' # close the file nc.close()
def volume_integrate(ncfile,varnames,shpfiles,constantdzz=False): """ Volume integrate a suntans variable for all time in the domain specified with a shpfile polygon """ # Use numexpr to try and speed things up import numexpr as ne # Load the spatial object sun = Spatial(ncfile,klayer=[-99]) Ac = sun.Ac # Calculate the mask region if type(shpfiles) != type([]): shpfiles = [shpfiles] masks = [] polynames = [] for shpfile in shpfiles: mask, maskpoly = maskShpPoly(sun.xv,sun.yv,shpfile) masks.append(mask) polynames.append(os.path.splitext(os.path.basename(shpfile))[0]) # Create a dictionary with output info data={} for poly in polynames: data.update({poly:{'V':np.zeros((sun.Nt,)),'time':sun.time}}) for varname in varnames: data[poly].update({varname:np.zeros((sun.Nt,))}) # Fix dzz for testing sun.tstep = [0] dzz = sun.loadData(variable='dzz') h = ne.evaluate("sum(dzz,axis=0)") #dzz = np.repeat(sun.dz[:,np.newaxis],sun.Nc,axis=1) for ii in range(sun.Nt): sun.tstep = [ii] print 'Volume integrating for time step: %d of %d...'%(ii,sun.Nt) # Load the depth and mean age arrays if not constantdzz: dzz = sun.loadData(variable='dzz') # Calculate the total volume #h = np.sum(dzz,axis=0) h = ne.evaluate("sum(dzz,axis=0)") for varname in varnames: tmp = sun.loadData(variable=varname) for mask,poly in zip(masks,polynames): V, A = sun.areaint(h,mask=mask) # Depth*area data[poly]['V'][ii] = V # Get the depth-integral #tmp_dz = sun.depthint(tmp,dz=dzz) tmp_dz = ne.evaluate("sum(tmp*dzz,axis=0)") # Calculate the volume-integral #tmp_dV, A = sun.areaint(tmp_dz,mask=mask) tmp_dV = ne.evaluate("sum(tmp_dz*Ac*mask)") data[poly][varname][ii]=tmp_dV/V return data