Пример #1
0
 def testKerasLossVsNonKerasLoss(self):
   features = np.random.uniform(0., 1., size=(12, 2, 20))
   labels = np.eye(12, 15, dtype=np.int32)
   loss_keras = losses.ContrastiveLoss()(labels, features)
   loss_direct = tf.reduce_mean(
       losses.contrastive_loss(features, labels=labels))
   self.assertFalse(np.isnan(loss_direct.numpy()))
   self.assertFalse(np.isnan(loss_keras.numpy()))
   self.assertEqual(loss_direct.numpy(), loss_keras.numpy())
Пример #2
0
 def testKerasImplementation(self):
   features = np.random.uniform(0., 1., (12, 2, 20))
   labels = np.eye(12, 15, dtype=np.int32)
   loss = losses.ContrastiveLoss()(labels, features)
   self.assertEqual(loss.shape, ())
   self.assertFalse(np.isnan(loss.numpy()))