Пример #1
0
 def testUnknownDenominatorMode(self):
     features = np.random.uniform(size=(10, 3, 20))
     labels = np.eye(10, dtype=np.int32)
     with self.assertRaisesRegex(ValueError, 'Invalid denominator_mode'):
         losses.contrastive_loss(features,
                                 labels,
                                 denominator_mode='invalid')
Пример #2
0
 def testUnknownSummationLocation(self):
     features = np.random.uniform(size=(10, 3, 20))
     labels = np.eye(10, dtype=np.int32)
     with self.assertRaisesRegex(ValueError, 'Invalid summation_location'):
         losses.contrastive_loss(features,
                                 labels,
                                 summation_location='invalid')
Пример #3
0
 def testUnknownNumViewsDimension(self):
     features = tf.keras.layers.Input(dtype=tf.float32,
                                      batch_size=1,
                                      shape=(None, 20))
     with self.assertRaisesRegex(ValueError,
                                 'features has unknown num_views'):
         losses.contrastive_loss(features)
Пример #4
0
 def testUnknownBatchSizeDimension(self):
     features = tf.keras.layers.Input(dtype=tf.float32,
                                      batch_size=None,
                                      shape=(2, 20))
     with self.assertRaisesRegex(ValueError,
                                 'features has unknown batch_size'):
         losses.contrastive_loss(features)
Пример #5
0
 def testDefaultBehaviourSameAsAllLabelsDifferent(self):
   features = np.random.uniform(size=(10, 3, 20))
   labels = np.eye(10, dtype=np.int64)
   loss = tf.reduce_mean(losses.contrastive_loss(features))
   loss_without_labels = tf.reduce_mean(
       losses.contrastive_loss(features, labels))
   self.assertFalse(np.isnan(loss.numpy()))
   self.assertFalse(np.isnan(loss_without_labels.numpy()))
   self.assertEqual(loss.numpy(), loss_without_labels.numpy())
Пример #6
0
 def testContrastModeOneVsAll(self):
   # shape (2, 2, 3)
   features = np.array([[[0, 0, 1], [0, 1, 0]], [[1., 0., 0.], [0., -1., 0.]]])
   loss_one = tf.reduce_mean(
       losses.contrastive_loss(
           features, contrast_mode=enums.LossContrastMode.ONE_VIEW))
   self.assertFalse(np.isnan(loss_one.numpy()))
   expected_loss = 1.098612  # np.log(3.)
   self.assertAlmostEqual(np.mean(loss_one.numpy()), expected_loss, places=6)
   loss_all = tf.reduce_mean(
       losses.contrastive_loss(
           features, contrast_mode=enums.LossContrastMode.ALL_VIEWS))
   self.assertFalse(np.isnan(loss_all.numpy()))
   self.assertNotAlmostEqual(
       np.mean(loss_all.numpy()), expected_loss, places=6)
Пример #7
0
    def _compute_contrastive_loss(self):
        """Computes and returns the contrastive loss on the projection."""
        with tf.name_scope('contrastive_loss'):
            contrastive_params = self.hparams.loss_all_stages.contrastive
            labels = (tf.one_hot(self.labels, self.num_classes)
                      if contrastive_params.use_labels else None)
            projection = self.projection
            projection_view_1, projection_view_2 = tf.split(projection,
                                                            2,
                                                            axis=-1)
            contrastive_loss = losses.contrastive_loss(
                tf.stack([projection_view_1, projection_view_2], axis=1),
                labels=labels,
                temperature=contrastive_params.temperature,
                base_temperature=0.07,
                contrast_mode=contrastive_params.contrast_mode,
                summation_location=contrastive_params.summation_location,
                denominator_mode=contrastive_params.denominator_mode,
                positives_cap=contrastive_params.positives_cap)

        if self.train:
            self._add_scalar_summary('loss/contrastive_loss', contrastive_loss)
            contrastive_loss = tf.reduce_mean(contrastive_loss)

        return contrastive_loss
Пример #8
0
  def testLossForOneView(self):
    features = np.array([
        [[0.01, 0.02, 0.14]],
        [[0.86, 0.97, 0.33]],
        [[0.32, 0.64, 0.28]],
    ])
    labels = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]],
                      dtype=np.int32)
    loss = losses.contrastive_loss(features, labels=labels, temperature=1.0)

    pos0 = np.exp(np.dot(features[0, 0, :], features[1, 0, :]))
    neg0 = np.exp(np.dot(features[0, 0, :], features[2, 0, :]))
    loss0 = -np.log(pos0 / (pos0 + neg0))
    pos1 = np.exp(np.dot(features[1, 0, :], features[0, 0, :]))
    neg1 = np.exp(np.dot(features[1, 0, :], features[2, 0, :]))
    loss1 = -np.log(pos1 / (pos1 + neg1))
    expected_loss = np.array([loss0, loss1, 0.0])

    self.assertTupleEqual(loss.numpy().shape, expected_loss.shape)
    for index, (val1, val2) in enumerate(zip(loss.numpy(), expected_loss)):
      self.assertAlmostEqual(
          val1,
          val2,
          places=5,
          msg=f'Lists not almost equal at index {index}: '
          f'{loss.numpy()} != {expected_loss}')
Пример #9
0
 def testLossForSummationLocationsAndDenominatorModes(self,
                                                      summation_location,
                                                      denominator_mode,
                                                      positives_cap,
                                                      expected_loss,
                                                      labels=(0, 0, 1)):
   features = np.array([
       [[0.01, 0.02, 0.14], [0.38, 0.61, 0.50]],
       [[0.86, 0.97, 0.33], [0.26, 0.68, 0.45]],
       [[0.32, 0.64, 0.28], [0.45, 0.74, 0.73]],
   ])
   labels = tf.one_hot(labels, 2)
   loss = losses.contrastive_loss(
       features,
       labels=labels,
       summation_location=summation_location,
       denominator_mode=denominator_mode,
       positives_cap=positives_cap)
   self.assertTupleEqual(loss.numpy().shape, (len(expected_loss),))
   for index, (val1, val2) in enumerate(zip(loss.numpy(), expected_loss)):
     self.assertAlmostEqual(
         val1,
         val2,
         places=5,
         msg=f'Lists not almost equal at index {index}: '
         '{loss.numpy()} != {expected_loss}')
Пример #10
0
  def testLossOnTPU(self):
    # Calling tpu.replicate in Eager mode doesn't work. Wrapping in a graph
    # implicitly disables Eager mode within its scope.
    with tf.Graph().as_default():
      features = tf.constant([
          [[0.01, 0.02, 0.14], [0.38, 0.61, 0.50]],
          [[0.86, 0.97, 0.33], [0.26, 0.68, 0.45]],
          [[0.32, 0.64, 0.28], [0.45, 0.74, 0.73]],
          [[0.45, 0.62, 0.07], [0.13, 0.28, 0.91]],
      ])
      labels = tf.one_hot((0, 0, 1, 1), 2)

      tpu_result = tf.compat.v1.tpu.replicate(
          losses.contrastive_loss,
          [[features[:2], labels[:2]], [features[2:], labels[2:]]])
      # tpu_result should be a list of 2 lists, each containing a single float
      # Tensor with shape [2].
      self.assertLen(tpu_result, 2)
      self.assertLen(tpu_result[0], 1)
      self.assertLen(tpu_result[1], 1)
      self.assertEqual([2], tpu_result[0][0].shape.as_list())
      self.assertEqual([2], tpu_result[1][0].shape.as_list())
      tpu_loss = tf.reshape(tpu_result, [4])

      cpu_loss = losses.contrastive_loss(features, labels=labels)

      cpu_partial_loss_1 = losses.contrastive_loss(
          features[:2], labels=labels[:2])
      cpu_partial_loss_2 = losses.contrastive_loss(
          features[2:], labels=labels[2:])
      cpu_partial_loss = tf.concat([cpu_partial_loss_1, cpu_partial_loss_2],
                                   axis=0)

      with self.cached_session() as sess:
        sess.run(tf.compat.v1.tpu.initialize_system())

        tpu_loss, cpu_loss, cpu_partial_loss = sess.run(
            (tpu_loss, cpu_loss, cpu_partial_loss))
        print(tpu_loss)
        print(cpu_loss)
        # Numerical precision isn't so high on TPU.
        self.assertAllClose(tpu_loss, cpu_loss, atol=1e-2)
        # Verify that the TPU computation is different than independently
        # computing the two "local batches" on CPU, because of the internal
        # cross_replica_concat.
        self.assertNotAllClose(tpu_loss, cpu_partial_loss, atol=1e-2)
Пример #11
0
 def testKerasLossVsNonKerasLoss(self):
   features = np.random.uniform(0., 1., size=(12, 2, 20))
   labels = np.eye(12, 15, dtype=np.int32)
   loss_keras = losses.ContrastiveLoss()(labels, features)
   loss_direct = tf.reduce_mean(
       losses.contrastive_loss(features, labels=labels))
   self.assertFalse(np.isnan(loss_direct.numpy()))
   self.assertFalse(np.isnan(loss_keras.numpy()))
   self.assertEqual(loss_direct.numpy(), loss_keras.numpy())
Пример #12
0
 def testConvFeatures(self, features_shape):
   features_shape = tf.TensorShape(features_shape)
   features = tf.random.uniform(shape=features_shape)
   # Normalize embeddings to ensure the Loss does not return NaN values
   #   for large feature sizes.
   normalization_axes = list(range(2, features_shape.rank))
   normalized_features = tf.nn.l2_normalize(features, axis=normalization_axes)
   loss = tf.reduce_mean(losses.contrastive_loss(normalized_features))
   self.assertFalse(np.isnan(loss.numpy()))
Пример #13
0
 def testLossValueWithTemp(self):
   sqrt2 = np.sqrt(2.)
   sqrt6 = np.sqrt(6.)
   features = np.array([[[0, 0, 1], [0, (2. * sqrt2) / 3., -1 / 3.]],
                        [[sqrt6 / 3., -sqrt2 / 3., -1. / 3],
                         [-sqrt6 / 3., -sqrt2 / 3., -1. / 3]]])
   loss = losses.contrastive_loss(features, temperature=0.1)
   self.assertFalse(np.isnan(loss.numpy()).any())
   expected_loss = 0.1098612  # 0.1 * np.log(3.)
   self.assertAlmostEqual(np.mean(loss.numpy()), expected_loss, places=5)
Пример #14
0
 def testLossValueWithLabels(self):
   sqrt2 = np.sqrt(2.)
   sqrt6 = np.sqrt(6.)
   features = np.array([[[0, 0, 1], [0, (2. * sqrt2) / 3., -1 / 3.]],
                        [[sqrt6 / 3., -sqrt2 / 3., -1. / 3],
                         [-sqrt6 / 3., -sqrt2 / 3., -1. / 3]]])
   labels = np.eye(2, dtype=np.int32)
   loss = losses.contrastive_loss(features, labels=labels)
   self.assertFalse(np.isnan(loss.numpy()).any())
   expected_loss = 1.098612  # np.log(3.)
   self.assertAlmostEqual(np.mean(loss.numpy()), expected_loss, places=6)
Пример #15
0
 def testLossValueWithLabelsAndPositives(self):
   features = np.array([[[0, 0, 1], [0, 0, 1]], [[0, 1, 0], [0, 1, 0]],
                        [[1, 0, 0], [1, 0, 0]]])
   labels = np.eye(3, dtype=np.int32)
   # Make the label of sample 1 and 2 the same (= label 0)
   labels[1] = labels[0]
   loss = losses.contrastive_loss(features, labels).numpy()
   self.assertFalse(np.isnan(loss).any())
   expected_loss = [
       1.57149910,  # (3. * np.log(np.e + 4) - 1) / 3.
       1.57149910,  # (3. * np.log(np.e + 4) - 1) / 3.
       0.90483244,  # np.log(np.e + 4) - 1
   ]
   self.assertAlmostEqual(loss[0], expected_loss[0], places=6)
   self.assertAlmostEqual(loss[1], expected_loss[1], places=6)
   self.assertAlmostEqual(loss[2], expected_loss[2], places=6)
Пример #16
0
 def testIncorrectLabelsRank(self):
   features = np.random.uniform(0., 1., size=(10, 3, 20))
   labels = np.random.randint(5, size=(4, 4))
   with self.assertRaisesRegex(ValueError, 'Invalid labels shape'):
     losses.contrastive_loss(features, labels=labels)
Пример #17
0
 def testIncorrectFeaturesRank(self):
   features = np.zeros([1, 1])
   with self.assertRaisesRegex(ValueError, 'Invalid features rank'):
     losses.contrastive_loss(features)