def test_plot_canvas(self): image = np.ones((128, 128, 3), dtype=np.uint8) image_stack = np.stack([image * i for i in range(25)], axis=0) canvas = imageutils.batch_to_canvas(image_stack) fig, ax = smplt.plot_canvas(canvas, 128, 128) return fig
def test_plot_canvas(self): image = np.ones((128, 128, 3), dtype=np.uint8) image_stack = np.stack([image * i for i in range(25)], axis=0) from supermariopy import imageutils canvas = imageutils.batch_to_canvas(image_stack) from supermariopy import plotting fig, ax = plotting.plot_canvas(canvas, 128, 128)
def test_batch_to_canvas(self): from supermariopy.imageutils import batch_to_canvas x = np.ones((9, 100, 100, 3)) canvas = batch_to_canvas(x) assert canvas.shape == (300, 300, 3) canvas = batch_to_canvas(x, cols=5) assert canvas.shape == (200, 500, 3) canvas = batch_to_canvas(x, cols=1) assert canvas.shape == (900, 100, 3) canvas = batch_to_canvas(x, cols=0) assert canvas.shape == (900, 100, 3) canvas = batch_to_canvas(x, cols=None) assert canvas.shape == (300, 300, 3)
def test_crop(self): kps = stickman.VUNetStickman.get_example_valid_keypoints_deepfashion() joint_img = stickman.VUNetStickman.make_joint_img( (128, 128), stickman.VUNET_JOINT_ORDER_DEEPFASHION, kps * 128, ) joint_order = stickman.VUNET_JOINT_ORDER_DEEPFASHION crops = [ stickman.VUNetStickman.normalize(joint_img, kps * 128, joint_img, joint_order, 1) ] crops = [c[0] for c in crops] crops = np.stack(crops, axis=0) crops = np.split(crops, 8, axis=-1) n_crops = len(crops) cols = math.ceil(math.sqrt(n_crops)) crops = np.concatenate(crops, axis=0) crops = imageutils.batch_to_canvas(crops, cols) fig, ax = plt.subplots(1, 1) ax.imshow(crops) plt.savefig("test_crop.png") return fig