def rf_predict_actual(data, n_estimators):
  # generate the features and targets
  features, targets = generate_features_targets(data)

  # instantiate a random forest classifier
  rfc = RandomForestClassifier(n_estimators=n_estimators)
  
  # get predictions using 10-fold cross validation with cross_val_predict
  predicted = cross_val_predict(rfc, features, targets, cv=10)

  # return the predictions and their actual classes
  return predicted, targets

  if __name__ == "__main__":
  data = np.load('galaxy_catalogue.npy')

  features, targets = generate_features_targets(data)

  # Print the shape of each array to check the arrays are the correct dimensions. 
  print("Features shape:", features.shape)
  print("Targets shape:", targets.shape)

  # fraction of data which should be in the training set
  fraction_training = 0.7

  # split the data using your function
  training, testing = splitdata_train_test(data, fraction_training)

  # print the key values
  print('Number data galaxies:', len(data))
  print('Train fraction:', fraction_training)
  print('Number of galaxies in training set:', len(training))
  print('Number of galaxies in testing set:', len(testing))


  predicted_class, actual_class = dtc_predict_actual(data)

  # Print some of the initial results
  print("Some initial results...\n   predicted,  actual")
  for i in range(10):
    print("{}. {}, {}".format(i, predicted_class[i], actual_class[i]))

# get the predicted and actual classes
  number_estimators = 50              # Number of trees
  predicted, actual = rf_predict_actual(data, number_estimators)

  # calculate the model score using your function
  accuracy = calculate_accuracy(predicted, actual)
  print("Accuracy score:", accuracy)
Пример #2
0
    features, targets = generate_features_targets(data)
    # instantiate a random forest classifier using n estimators
    rfc = RandomForestClassifier(n_estimators=n_estimators)
    # get predictions using 10-fold cross validation with cross_val_predict
    predictions = cross_val_predict(rfc, features, targets, cv=10)
    # return the predictions and their actual classes
    return predictions, targets


if __name__ == "__main__":
    data = np.load('galaxy_data.npy')

    # get the predicted and actual classes
    number_estimators = 50  # Number of trees
    predicted, actual = rf_predict_actual(data, number_estimators)

    # calculate the model score using your function
    accuracy = calculate_accuracy(predicted, actual)
    print("Accuracy score:", accuracy)

    # calculate the models confusion matrix using sklearns confusion_matrix function
    class_labels = list(set(actual))
    model_cm = confusion_matrix(y_true=actual,
                                y_pred=predicted,
                                labels=class_labels)

    # plot the confusion matrix using the provided functions.
    plt.figure()
    plot_confusion_matrix(model_cm, classes=class_labels, normalize=False)
    plt.show()