Пример #1
0
def predict_neural_network(dataset, model_name):

    print 'neural network, ' + dataset

    reload(surface_fitter)
    from surface_fitter import SurfNN
    nn = SurfNN(dataset, model_name)
    x_flat, y_flat, U_min, U_max, U_shape = nn.load_data()

    # rank-1 arrays
    x = x_flat[:, 0]
    t = x_flat[:, 1]
    u_noise = y_flat[:, 0]

    # rank-2 arrays
    X = x.reshape(U_shape)  # space mesh
    T = t.reshape(U_shape)  # time mesh
    U_noise = u_noise.reshape(U_shape)  # normalized noisy data

    # get timestamp
    t0 = time.time()

    # make neural net predictions
    surface_data = nn.predict()
    U_pred = surface_data['inputs'][0]  # un-normalized prediction
    U_x_pred = surface_data['inputs'][1]  # un-normalized prediction
    U_xx_pred = surface_data['inputs'][2]  # un-normalized prediction
    U_t_pred = surface_data['outputs'][0]  # un-normalized prediction

    # print time
    print 'Elapsed time =', time.time() - t0, 'seconds.'
    print ''

    # store everything in dictionary
    surface_data = {}
    surface_data['inputs'] = [U_pred, U_x_pred, U_xx_pred]
    surface_data['outputs'] = [U_t_pred]
    surface_data['indep_vars'] = [X, T]
    surface_data['input_names'] = ['U', 'U_x', 'U_xx']
    surface_data['output_names'] = ['U_t']
    surface_data['indep_var_names'] = ['X', 'T']

    # save the data
    np.save('data/' + dataset + '_' + model_name, surface_data)
Пример #2
0
    # loop over noise levels
    for ind in inds:
        
        # loop over prediction methods
        for i,model_name in enumerate(model_names):
            
            try:
                
                dataset = data_name+'_'+ind+'_'+model_name
                print dataset

                # load data using surface fitter class
                reload(surface_fitter)
                from surface_fitter import SurfNN
                nn = SurfNN(data_name+'_'+ind, None)
                x_flat, y_flat, U_min, U_max, U_shape = nn.load_data()

                # rank-1 arrays
                x = x_flat[:,0]
                t = x_flat[:,1]
                u_noise = y_flat[:,0]

                if i == 0:
                    gamma = 0.0 #gamma value for residual computation
                    plot_max = 0.1 #to aid plotting
                elif i == 1:
                    gamma = 0.5 #gamma value for residual computation
                    plot_max = 0.5 #to aid plotting
                elif i == 2:
                    gamma = 1.0 #gamma value for residual computation
Пример #3
0
for dataset in datasets:

    # loop over noise levels
    for ind in inds:

        data_name = dataset + '_' + ind

        print ''
        print data_name, model_name
        print ''

        # run options
        if train_ann == 1:

            t0 = time.time()
            model = SurfNN(data_name, model_name)
            model.train(epochs=num_epochs,
                        batch_size=batch_size,
                        early_stopper=early_stop,
                        new_model=new_model)
            print 'Elapsed time =', time.time() - t0, 'seconds.'

        if make_ann_data == 1:

            predict_neural_network(data_name, model_name)

        if make_fd_data == 1:

            predict_finite_differences(data_name, None)

        if make_sp_data == 1:
Пример #4
0
def predict_NCV_bisplines(dataset, model_name=None):

    print 'bivariate NCV splines, ' + dataset

    # load data using SurfNN class
    reload(surface_fitter)
    from surface_fitter import SurfNN
    nn = SurfNN(dataset, model_name)
    x_flat, y_flat, U_min, U_max, U_shape = nn.load_data()

    # spline parameters
    x_w = 5  # 1/2 tile width in x direction
    t_w = 5  # 1/2 tile width in x direction
    x_order = 3  # polynomial x degree
    t_order = 3  # polynomial t degree

    # GLS parameters
    gamma = 1.0
    thres = 1e-4

    # rank-1 arrays
    x = x_flat[:, 0]
    t = x_flat[:, 1]
    u_noise = y_flat[:, 0]

    # rank-2 arrays
    X = x.reshape(U_shape)  # space mesh
    T = t.reshape(U_shape)  # time mesh
    U_noise = u_noise.reshape(U_shape)  # normalized noisy data

    # initialize empty interior arrays
    U_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])
    U_x_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])
    U_xx_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])
    U_t_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])

    # initialize empty full arrays
    U_pred = np.zeros(U_shape)
    U_x_pred = np.zeros(U_shape)
    U_xx_pred = np.zeros(U_shape)
    U_t_pred = np.zeros(U_shape)

    # get timestamp
    t0 = time.time()

    # populate interiors with spline approximations
    for i in np.arange(x_w, U_shape[0] - x_w):
        for j in np.arange(t_w, U_shape[1] - t_w):

            # get tiles
            X_tile = X[i - x_w:i + x_w + 1, j - t_w:j + t_w + 1]
            T_tile = T[i - x_w:i + x_w + 1, j - t_w:j + t_w + 1]
            U_tile = U_noise[i - x_w:i + x_w + 1, j - t_w:j + t_w + 1]

            # interpolate for OLS scenario
            tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)

            #.predict from OLS model
            U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
            ##construct weight matrix from U_pred
            W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
            #Values below thres will have OLS model
            W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0

            #re-do spline smooth with GLS cost function
            tck = bisplrep(X_tile.flatten(),
                           T_tile.flatten(),
                           U_tile.flatten(),
                           w=W,
                           kx=x_order,
                           ky=t_order)

            # predict
            U_pred_int[i - x_w, j - t_w] = bisplev(un(X_tile),
                                                   un(T_tile),
                                                   tck,
                                                   dx=0,
                                                   dy=0)[x_w, t_w]
            U_x_pred_int[i - x_w, j - t_w] = bisplev(un(X_tile),
                                                     un(T_tile),
                                                     tck,
                                                     dx=1,
                                                     dy=0)[x_w, t_w]
            U_xx_pred_int[i - x_w, j - t_w] = bisplev(un(X_tile),
                                                      un(T_tile),
                                                      tck,
                                                      dx=2,
                                                      dy=0)[x_w, t_w]
            U_t_pred_int[i - x_w, j - t_w] = bisplev(un(X_tile),
                                                     un(T_tile),
                                                     tck,
                                                     dx=0,
                                                     dy=1)[x_w, t_w]

    # populate exteriors with spline approximations
    for i in np.arange(x_w, U_shape[0] - x_w):

        # column location
        j = t_w

        # get tiles
        X_tile = X[i - x_w:i + x_w + 1, :j + t_w + 1]
        T_tile = T[i - x_w:i + x_w + 1, :j + t_w + 1]
        U_tile = U_noise[i - x_w:i + x_w + 1, :j + t_w + 1]

        # interpolate
        tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)

        #.predict from OLS model
        U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
        ##construct weight matrix from U_pred
        W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
        #Values below thres will have OLS model
        W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0

        #re-do spline smooth with GLS cost function
        tck = bisplrep(X_tile.flatten(),
                       T_tile.flatten(),
                       U_tile.flatten(),
                       w=W,
                       kx=x_order,
                       ky=t_order)

        #https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.bisplrep.html
        # predict
        U_pred[i, :j] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                dy=0)[x_w, :t_w]
        U_x_pred[i, :j] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                  dy=0)[x_w, :t_w]
        U_xx_pred[i, :j] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                   dy=0)[x_w, :t_w]
        U_t_pred[i, :j] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                  dy=1)[x_w, :t_w]

        # column location
        j = -t_w

        # get tiles
        X_tile = X[i - x_w:i + x_w + 1, j - t_w - 1:]
        T_tile = T[i - x_w:i + x_w + 1, j - t_w - 1:]
        U_tile = U_noise[i - x_w:i + x_w + 1, j - t_w - 1:]

        # interpolate
        tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)

        #.predict from OLS model
        U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
        ##construct weight matrix from U_pred
        W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
        #Values below thres will have OLS model
        W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0

        #re-do spline smooth with GLS cost function
        tck = bisplrep(X_tile.flatten(),
                       T_tile.flatten(),
                       U_tile.flatten(),
                       w=W,
                       kx=x_order,
                       ky=t_order)

        # predict
        U_pred[i, j:] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                dy=0)[x_w, t_w + 1:]
        U_x_pred[i, j:] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                  dy=0)[x_w, t_w + 1:]
        U_xx_pred[i, j:] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                   dy=0)[x_w, t_w + 1:]
        U_t_pred[i, j:] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                  dy=1)[x_w, t_w + 1:]

    # populate exteriors with spline approximations
    for j in np.arange(t_w, U_shape[1] - t_w):

        # row location
        i = x_w

        # get tiles
        X_tile = X[:i + x_w + 1, j - t_w:j + t_w + 1]
        T_tile = T[:i + x_w + 1, j - t_w:j + t_w + 1]
        U_tile = U_noise[:i + x_w + 1, j - t_w:j + t_w + 1]

        # interpolate
        tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)

        #.predict from OLS model
        U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
        ##construct weight matrix from U_pred
        W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
        #Values below thres will have OLS model
        W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0

        #re-do spline smooth with GLS cost function
        tck = bisplrep(X_tile.flatten(),
                       T_tile.flatten(),
                       U_tile.flatten(),
                       w=W,
                       kx=x_order,
                       ky=t_order)

        # predict
        U_pred[:i, j] = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)[:x_w,
                                                                         t_w]
        U_x_pred[:i, j] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                  dy=0)[:x_w, t_w]
        U_xx_pred[:i, j] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                   dy=0)[:x_w, t_w]
        U_t_pred[:i, j] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                  dy=1)[:x_w, t_w]

        # row location
        i = -x_w

        # get tiles
        X_tile = X[i - x_w - 1:, j - t_w:j + t_w + 1]
        T_tile = T[i - x_w - 1:, j - t_w:j + t_w + 1]
        U_tile = U_noise[i - x_w - 1:, j - t_w:j + t_w + 1]

        # interpolate
        tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)

        #.predict from OLS model
        U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
        ##construct weight matrix from U_pred
        W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
        #Values below thres will have OLS model
        W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0

        #re-do spline smooth with GLS cost function
        tck = bisplrep(X_tile.flatten(),
                       T_tile.flatten(),
                       U_tile.flatten(),
                       w=W,
                       kx=x_order,
                       ky=t_order)

        # predict
        U_pred[i:, j] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                dy=0)[x_w + 1:, t_w]
        U_x_pred[i:, j] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                  dy=0)[x_w + 1:, t_w]
        U_xx_pred[i:, j] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                   dy=0)[x_w + 1:, t_w]
        U_t_pred[i:, j] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                  dy=1)[x_w + 1:, t_w]

    # populate 0,0 corner with spline approximations
    X_tile = X[:2 * x_w + 1, :2 * t_w + 1]
    T_tile = T[:2 * x_w + 1, :2 * t_w + 1]
    U_tile = U_noise[:2 * x_w + 1, :2 * t_w + 1]
    tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)
    #.predict from OLS model
    U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
    ##construct weight matrix from U_pred
    W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
    #Values below thres will have OLS model
    W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0
    #re-do spline smooth with GLS cost function
    tck = bisplrep(X_tile.flatten(),
                   T_tile.flatten(),
                   U_tile.flatten(),
                   w=W,
                   kx=x_order,
                   ky=t_order)
    U_pred[:x_w, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                 dy=0)[:x_w, :t_w]
    U_x_pred[:x_w, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                   dy=0)[:x_w, :t_w]
    U_xx_pred[:x_w, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                    dy=0)[:x_w, :t_w]
    U_t_pred[:x_w, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                   dy=1)[:x_w, :t_w]

    # populate 0,-1 corner with spline approximations
    X_tile = X[:2 * x_w + 1, -2 * t_w - 1:]
    T_tile = T[:2 * x_w + 1, -2 * t_w - 1:]
    U_tile = U_noise[:2 * x_w + 1, -2 * t_w - 1:]
    tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)
    U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
    ##construct weight matrix from U_pred
    W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
    #Values below thres will have OLS model
    W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0
    #re-do spline smooth with GLS cost function
    tck = bisplrep(X_tile.flatten(),
                   T_tile.flatten(),
                   U_tile.flatten(),
                   w=W,
                   kx=x_order,
                   ky=t_order)
    U_pred[:x_w, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                  dy=0)[:x_w, -t_w:]
    U_x_pred[:x_w, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                    dy=0)[:x_w, -t_w:]
    U_xx_pred[:x_w, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                     dy=0)[:x_w, -t_w:]
    U_t_pred[:x_w, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                    dy=1)[:x_w, -t_w:]

    # populate -1,0 corner with spline approximations
    X_tile = X[-2 * x_w - 1:, :2 * t_w + 1]
    T_tile = T[-2 * x_w - 1:, :2 * t_w + 1]
    U_tile = U_noise[-2 * x_w - 1:, :2 * t_w + 1]
    tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)
    U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
    ##construct weight matrix from U_pred
    W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
    #Values below thres will have OLS model
    W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0
    #re-do spline smooth with GLS cost function
    tck = bisplrep(X_tile.flatten(),
                   T_tile.flatten(),
                   U_tile.flatten(),
                   w=W,
                   kx=x_order,
                   ky=t_order)
    U_pred[-x_w:, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                  dy=0)[-x_w:, :t_w]
    U_x_pred[-x_w:, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                    dy=0)[-x_w:, :t_w]
    U_xx_pred[-x_w:, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                     dy=0)[-x_w:, :t_w]
    U_t_pred[-x_w:, :t_w] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                    dy=1)[-x_w:, :t_w]

    # populate -1,-1 corner with spline approximations
    X_tile = X[-2 * x_w - 1:, -2 * t_w - 1:]
    T_tile = T[-2 * x_w - 1:, -2 * t_w - 1:]
    U_tile = U_noise[-2 * x_w - 1:, -2 * t_w - 1:]
    tck = bisplrep(X_tile, T_tile, U_tile, kx=x_order, ky=t_order)
    U_pred_OLS = bisplev(un(X_tile), un(T_tile), tck, dx=0, dy=0)
    ##construct weight matrix from U_pred
    W = 1 / np.abs(U_pred_OLS.flatten()**gamma)
    #Values below thres will have OLS model
    W[np.abs(U_pred_OLS.flatten()) < thres] = 1.0
    #re-do spline smooth with GLS cost function
    tck = bisplrep(X_tile.flatten(),
                   T_tile.flatten(),
                   U_tile.flatten(),
                   w=W,
                   kx=x_order,
                   ky=t_order)
    U_pred[-x_w:, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                   dy=0)[-x_w:, -t_w:]
    U_x_pred[-x_w:, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=1,
                                     dy=0)[-x_w:, -t_w:]
    U_xx_pred[-x_w:, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=2,
                                      dy=0)[-x_w:, -t_w:]
    U_t_pred[-x_w:, -t_w:] = bisplev(un(X_tile), un(T_tile), tck, dx=0,
                                     dy=1)[-x_w:, -t_w:]

    # embed spline interiors inside full approximations
    U_pred[x_w:-x_w, t_w:-t_w] = U_pred_int
    U_t_pred[x_w:-x_w, t_w:-t_w] = U_t_pred_int
    U_x_pred[x_w:-x_w, t_w:-t_w] = U_x_pred_int
    U_xx_pred[x_w:-x_w, t_w:-t_w] = U_xx_pred_int

    # print time
    print 'Elapsed time =', time.time() - t0, 'seconds.'
    print ''

    # bring predictions back to original scale
    U_pred = U_max * U_pred + U_min  # un-normalized prediction
    U_x_pred = U_max * U_x_pred  # un-normalized prediction
    U_xx_pred = U_max * U_xx_pred  # un-normalized prediction
    U_t_pred = U_max * U_t_pred  # un-normalized prediction

    # store everything in dictionary
    surface_data = {}
    surface_data['inputs'] = [U_pred, U_x_pred, U_xx_pred]
    surface_data['outputs'] = [U_t_pred]
    surface_data['indep_vars'] = [X, T]
    surface_data['input_names'] = ['U', 'U_x', 'U_xx']
    surface_data['output_names'] = ['U_t']
    surface_data['indep_var_names'] = ['X', 'T']

    # save the data
    np.save('data/' + dataset + '_NCV_bisplines', surface_data)
Пример #5
0
def predict_finite_differences(dataset, model_name=None):

    print 'finite differences, ' + dataset

    # load data using SurfNN class
    reload(surface_fitter)
    from surface_fitter import SurfNN
    nn = SurfNN(dataset, model_name)
    x_flat, y_flat, U_min, U_max, U_shape = nn.load_data()

    # rank-1 arrays
    x = x_flat[:, 0]
    t = x_flat[:, 1]
    u_noise = y_flat[:, 0]

    # rank-2 arrays
    X = x.reshape(U_shape)  # space mesh
    T = t.reshape(U_shape)  # time mesh
    U_noise = u_noise.reshape(U_shape)  # normalized noisy data

    # finite difference params
    x_u = np.unique(x)
    t_u = np.unique(t)
    dx = float(x_u[1]) - float(x_u[0])
    dt = float(t_u[1]) - float(t_u[0])

    # finite difference filter
    Dx = np.zeros((3, 3))
    Dx[0, 1] = 1.0 / (2 * dx)
    Dx[2, 1] = -1.0 / (2 * dx)
    Dt = np.zeros((3, 3))
    Dt[1, 0] = 1.0 / (2 * dt)
    Dt[1, 2] = -1.0 / (2 * dt)

    # get timestamp
    t0 = time.time()

    # compute central diffs on interior, forward diffs on exterior
    U_pred = U_noise
    U_t_pred = convolve2d(U_pred,
                          Dt,
                          boundary='fill',
                          fillvalue=0,
                          mode='same')
    U_t_pred[:, 0] = (U_pred[:, 1] - U_pred[:, 0]) / dt
    U_t_pred[:, -1] = (U_pred[:, -1] - U_pred[:, -2]) / dt
    U_x_pred = convolve2d(U_pred,
                          Dx,
                          boundary='fill',
                          fillvalue=0,
                          mode='same')
    U_x_pred[0, :] = (U_pred[1, :] - U_pred[0, :]) / dx
    U_x_pred[-1, :] = (U_pred[-1, :] - U_pred[-2, :]) / dx
    U_xx_pred = convolve2d(U_x_pred,
                           Dx,
                           boundary='fill',
                           fillvalue=0,
                           mode='same')
    U_xx_pred[0, :] = (U_x_pred[1, :] - U_x_pred[0, :]) / dx
    U_xx_pred[-1, :] = (U_x_pred[-1, :] - U_x_pred[-2, :]) / dx

    # print time
    print 'Elapsed time =', time.time() - t0, 'seconds.'
    print ''

    # bring predictions back to original scale
    U_pred = U_max * U_pred + U_min  # un-normalized prediction
    U_x_pred = U_max * U_x_pred  # un-normalized prediction
    U_xx_pred = U_max * U_xx_pred  # un-normalized prediction
    U_t_pred = U_max * U_t_pred  # un-normalized prediction

    # store everything in dictionary
    surface_data = {}
    surface_data['inputs'] = [U_pred, U_x_pred, U_xx_pred]
    surface_data['outputs'] = [U_t_pred]
    surface_data['indep_vars'] = [X, T]
    surface_data['input_names'] = ['U', 'U_x', 'U_xx']
    surface_data['output_names'] = ['U_t']
    surface_data['indep_var_names'] = ['X', 'T']

    # save the data
    np.save('data/' + dataset + '_finite_differences', surface_data)
Пример #6
0
def predict_splines(dataset, model_name=None):

    print 'univariate splines, ' + dataset

    # load data using SurfNN class
    reload(surface_fitter)
    from surface_fitter import SurfNN
    nn = SurfNN(dataset, model_name)
    x_flat, y_flat, U_min, U_max, U_shape = nn.load_data()

    # spline parameters
    x_w = 5  # 1/2 line width in x direction
    t_w = 5  # 1/2 line width in x direction
    x_order = 3  # polynomial x degree
    t_order = 3  # polynomial t degree

    # rank-1 arrays
    x = x_flat[:, 0]
    t = x_flat[:, 1]
    u_noise = y_flat[:, 0]

    # rank-2 arrays
    X = x.reshape(U_shape)  # space mesh
    T = t.reshape(U_shape)  # time mesh
    U_noise = u_noise.reshape(U_shape)  # normalized noisy data, dims = (x,t)
    U_pred = U_noise  #

    # initialize empty interior arrays
    U_x_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])
    U_xx_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])
    U_t_pred_int = np.zeros([U_shape[0] - 2 * x_w, U_shape[1] - 2 * t_w])

    # initialize empty full arrays
    U_x_pred = np.zeros(U_shape)
    U_xx_pred = np.zeros(U_shape)
    U_t_pred = np.zeros(U_shape)

    # get timestamp
    t0 = time.time()

    # populate interiors with spline approximations
    for i in np.arange(x_w, U_shape[0] - x_w):
        for j in np.arange(t_w, U_shape[1] - t_w):

            # get lines
            X_line = X[i - x_w:i + x_w + 1, j]
            T_line = T[i, j - t_w:j + t_w + 1]
            U_line_x = U_noise[i - x_w:i + x_w + 1, j]
            U_line_t = U_noise[i, j - t_w:j + t_w + 1]

            # interpolate
            tck_x = splrep(X_line,
                           U_line_x,
                           k=x_order,
                           w=np.ones(X_line.shape))
            tck_t = splrep(T_line,
                           U_line_t,
                           k=t_order,
                           w=np.ones(T_line.shape))

            # predict
            U_x_pred_int[i - x_w, j - t_w] = splev(un(X_line), tck_x,
                                                   der=1)[x_w]
            U_xx_pred_int[i - x_w, j - t_w] = splev(un(X_line), tck_x,
                                                    der=2)[x_w]
            U_t_pred_int[i - x_w, j - t_w] = splev(un(T_line), tck_t,
                                                   der=1)[t_w]

    # populate left/right boundaries (not corners) with splines
    for i in np.arange(x_w, U_shape[0] - x_w):

        #
        # t derivatives first
        #

        # column location
        j = t_w

        # get lines
        T_line = T[i, :j + t_w + 1]
        U_line_t = U_noise[i, :j + t_w + 1]

        # interpolate
        tck_t = splrep(T_line, U_line_t, k=t_order, w=np.ones(T_line.shape))

        # predict
        U_t_pred[i, :j] = splev(T_line, tck_t, der=1)[:t_w]

        # column location
        j = -t_w

        # get lines
        T_line = T[i, j - t_w - 1:]
        U_line_t = U_noise[i, j - t_w - 1:]

        # interpolate
        tck_t = splrep(T_line, U_line_t, k=t_order, w=np.ones(T_line.shape))

        # predict
        U_t_pred[i, j:] = splev(T_line, tck_t, der=1)[-t_w:]

        #
        # x derivatives next
        #

        # column location
        j = t_w

        # get tiles
        X_tile = X[i - x_w:i + x_w + 1, :j + t_w + 1]
        U_tile_x = U_noise[i - x_w:i + x_w + 1, :j + t_w + 1]

        # loop over columns
        for t_loc in range(t_w):

            # interpolate
            tck_x = splrep(X_tile[:, t_loc],
                           U_tile_x[:, t_loc],
                           k=x_order,
                           w=np.ones(X_tile[:, t_loc].shape))

            # predict
            U_x_pred[i, t_loc] = splev(un(X_tile[:, t_loc]), tck_x, der=1)[x_w]
            U_xx_pred[i, t_loc] = splev(un(X_tile[:, t_loc]), tck_x,
                                        der=2)[x_w]

        # column location
        j = -t_w

        # get tiles
        X_tile = X[i - x_w:i + x_w + 1, j - t_w - 1:]
        U_tile_x = U_noise[i - x_w:i + x_w + 1, j - t_w - 1:]

        # loop over columns
        for t_loc in range(t_w):

            # interpolate
            tck_x = splrep(X_tile[:, t_loc + t_w],
                           U_tile_x[:, t_loc + t_w],
                           k=x_order,
                           w=np.ones(X_tile[:, t_loc].shape))

            # predict
            U_x_pred[i, t_loc + j] = splev(un(X_tile[:, t_loc + t_w]),
                                           tck_x,
                                           der=1)[x_w]
            U_xx_pred[i, t_loc + j] = splev(un(X_tile[:, t_loc + t_w]),
                                            tck_x,
                                            der=2)[x_w]

    # populate top/bottom boundaries (not corners) with splines
    for j in np.arange(t_w, U_shape[1] - t_w):

        #
        # x derivatives first
        #

        # row location
        i = x_w

        # get lines
        X_line = X[:i + x_w + 1, j]
        U_line_x = U_noise[:i + x_w + 1, j]

        # interpolate
        tck_x = splrep(X_line, U_line_x, k=x_order, w=np.ones(X_line.shape))

        # predict
        U_x_pred[:i, j] = splev(X_line, tck_x, der=1)[:x_w]
        U_xx_pred[:i, j] = splev(X_line, tck_x, der=2)[:x_w]

        # row location
        i = -x_w

        # get tiles
        X_line = X[i - x_w - 1:, j]
        U_line_x = U_noise[i - x_w - 1:, j]

        # interpolate
        tck_x = splrep(X_line, U_line_x, k=x_order, w=np.ones(X_line.shape))

        # predict
        U_x_pred[i:, j] = splev(X_line, tck_x, der=1)[-x_w:]
        U_xx_pred[i:, j] = splev(X_line, tck_x, der=2)[-x_w:]

        #
        # t derivatives next
        #

        # row location
        i = x_w

        # get tiles
        T_tile = T[:i + x_w + 1, j - t_w:j + t_w + 1]
        U_tile_t = U_noise[:i + x_w + 1, j - t_w:j + t_w + 1]

        # loop over columns
        for x_loc in range(x_w):

            # interpolate
            tck_t = splrep(T_tile[x_loc, :],
                           U_tile_t[x_loc, :],
                           k=t_order,
                           w=np.ones(T_tile[x_loc, :].shape))

            # predict
            U_t_pred[x_loc, j] = splev(un(T_tile[x_loc, :]), tck_t, der=1)[t_w]

        # row location
        i = -x_w

        # get tiles
        T_tile = T[i - x_w - 1:, j - t_w:j + t_w + 1]
        U_tile_t = U_noise[i - x_w - 1:, j - t_w:j + t_w + 1]

        # loop over columns
        for x_loc in range(x_w):

            # interpolate
            tck_t = splrep(T_tile[x_loc + x_w, :],
                           U_tile_t[x_loc + x_w, :],
                           k=t_order,
                           w=np.ones(T_tile[x_loc + x_w, :].shape))

            # predict
            U_t_pred[x_loc + i, j] = splev(un(T_tile[x_loc + x_w, :]),
                                           tck_t,
                                           der=1)[t_w]

    # populate (0,0) corner with spline approximations
    for i in range(x_w):
        T_line = T[i, :2 * t_w + 1]
        U_line = U_noise[i, :2 * t_w + 1]
        tck = splrep(T_line, U_line, k=t_order, w=np.ones(T_line.shape))
        U_t_pred[i, :t_w] = splev(un(T_line), tck, der=1)[:t_w]
    for j in range(t_w):
        X_line = X[:2 * x_w + 1, j]
        U_line = U_noise[:2 * x_w + 1, j]
        tck = splrep(X_line, U_line, k=x_order, w=np.ones(X_line.shape))
        U_x_pred[:x_w, j] = splev(un(X_line), tck, der=1)[:x_w]
        U_xx_pred[:x_w, j] = splev(un(X_line), tck, der=2)[:x_w]

    # populate (0,-1) corner with spline approximations
    for i in range(x_w):
        T_line = T[i, -2 * t_w - 1:]
        U_line = U_noise[i, -2 * t_w - 1:]
        tck = splrep(T_line, U_line, k=t_order, w=np.ones(T_line.shape))
        U_t_pred[i, -t_w:] = splev(un(T_line), tck, der=1)[-t_w:]
    for j in range(-t_w, 0):
        X_line = X[:2 * x_w + 1, j]
        U_line = U_noise[:2 * x_w + 1, j]
        tck = splrep(X_line, U_line, k=x_order, w=np.ones(X_line.shape))
        U_x_pred[:x_w, j] = splev(un(X_line), tck, der=1)[:x_w]
        U_xx_pred[:x_w, j] = splev(un(X_line), tck, der=2)[:x_w]

    # populate (-1,0) corner with spline approximations
    for i in range(-x_w, 0):
        T_line = T[i, :2 * t_w + 1]
        U_line = U_noise[i, :2 * t_w + 1]
        tck = splrep(T_line, U_line, k=t_order, w=np.ones(T_line.shape))
        U_t_pred[i, :t_w] = splev(un(T_line), tck, der=1)[:t_w]
    for j in range(t_w):
        X_line = X[-2 * x_w - 1:, j]
        U_line = U_noise[-2 * x_w - 1:, j]
        tck = splrep(X_line, U_line, k=x_order, w=np.ones(X_line.shape))
        U_x_pred[-x_w:, j] = splev(un(X_line), tck, der=1)[-x_w:]
        U_xx_pred[-x_w:, j] = splev(un(X_line), tck, der=2)[-x_w:]

    # populate (-1,-1) corner with spline approximations
    for i in range(-x_w, 0):
        T_line = T[i, -2 * t_w - 1:]
        U_line = U_noise[i, -2 * t_w - 1:]
        tck = splrep(T_line, U_line, k=t_order, w=np.ones(T_line.shape))
        U_t_pred[i, -t_w:] = splev(un(T_line), tck, der=1)[-t_w:]
    for j in range(-t_w, 0):
        X_line = X[-2 * x_w - 1:, j]
        U_line = U_noise[-2 * x_w - 1:, j]
        tck = splrep(X_line, U_line, k=x_order, w=np.ones(X_line.shape))
        U_x_pred[-x_w:, j] = splev(un(X_line), tck, der=1)[-x_w:]
        U_xx_pred[-x_w:, j] = splev(un(X_line), tck, der=2)[-x_w:]

    # embed spline interiors inside full approximations
    U_t_pred[x_w:-x_w, t_w:-t_w] = U_t_pred_int
    U_x_pred[x_w:-x_w, t_w:-t_w] = U_x_pred_int
    U_xx_pred[x_w:-x_w, t_w:-t_w] = U_xx_pred_int

    # print time
    print 'Elapsed time =', time.time() - t0, 'seconds.'
    print ''

    # bring predictions back to original scale
    U_pred = U_max * U_pred + U_min  # un-normalized prediction
    U_x_pred = U_max * U_x_pred  # un-normalized prediction
    U_xx_pred = U_max * U_xx_pred  # un-normalized prediction
    U_t_pred = U_max * U_t_pred  # un-normalized prediction

    # store everything in dictionary
    surface_data = {}
    surface_data['inputs'] = [U_pred, U_x_pred, U_xx_pred]
    surface_data['outputs'] = [U_t_pred]
    surface_data['indep_vars'] = [X, T]
    surface_data['input_names'] = ['U', 'U_x', 'U_xx']
    surface_data['output_names'] = ['U_t']
    surface_data['indep_var_names'] = ['X', 'T']

    # save the data
    np.save('data/' + dataset + '_splines', surface_data)
Пример #7
0
def predict_global_bisplines(dataset, model_name=None):

    import warnings
    warnings.simplefilter("ignore")

    t0 = time.time()

    # load data using SurfNN class
    reload(surface_fitter)
    from surface_fitter import SurfNN

    nn = SurfNN(dataset, model_name)
    x_flat, y_flat, U_min, U_max, U_shape = nn.load_data()

    #suggested smoothness upper bound ,
    #based on scipy's bisplrep documentation
    m = len(x_flat)
    s = m + math.sqrt(2 * m)

    # spline parameters
    x_order = 3  # polynomial x degree
    t_order = 3  # polynomial t degree

    # GLS parameters
    gamma = 1.0
    thres = 1e-4
    iterMax = 100

    # rank-1 arrays
    x = x_flat[:, 0]
    t = x_flat[:, 1]
    u_noise = y_flat[:, 0]

    # rank-2 arrays
    X = x.reshape(U_shape)  # space mesh
    T = t.reshape(U_shape)  # time mesh
    U_noise = u_noise.reshape(U_shape)  # normalized noisy data

    tpts = len(np.unique(t))
    train_val_ind = np.random.permutation(tpts)
    train_ind = np.sort(train_val_ind[:np.int(.9 * tpts)])
    val_ind = np.sort(train_val_ind[np.int(.9 * tpts):])

    #subsample into train-val split
    X_train = X[:, train_ind]
    T_train = T[:, train_ind]
    U_train = U_noise[:, train_ind]
    X_val = X[:, val_ind]
    T_val = T[:, val_ind]
    U_val = U_noise[:, val_ind]

    s_convergence = False
    s_list = []

    #INITIALIZE optimization params
    GLS_error_opt = np.inf
    GLS_error_prev = np.inf
    GLS_list = []
    tck_opt = []

    while s_convergence == False:

        s_list.append(s)

        print "attempting GLS global splines for s= " + str(s)

        try:

            GLS_error, tck = GLS_spline_train_val(s,
                                                  X_train,
                                                  T_train,
                                                  U_train,
                                                  X_val,
                                                  T_val,
                                                  U_val,
                                                  iterMax,
                                                  x_order=3,
                                                  t_order=3,
                                                  gamma=1.0,
                                                  thres=1e-4)

            print "Error is " + str(GLS_error)

        except:
            GLS_error = np.inf

            print "Failed to run. s too large"

        #compare to current best value:
        if GLS_error < GLS_error_opt:
            #if smaller GLS value, then re-set
            GLS_error_opt = GLS_error
            tck_opt = tck
            s_opt = s

        if GLS_error > GLS_error_prev:
            #if the GLS error increases, and we've done at least 3 finite
            #s values, then we're beginning to overfit,
            # so time to stop decreasing s
            if np.sum(np.isfinite(s_list)) >= 3:
                s_convergence = True
        else:
            #if not, keep going
            pass

        if np.isfinite(GLS_error):
            GLS_error_prev = GLS_error

        GLS_list.append(GLS_error)
        s = s / 2.0

    #s_opt now gives us an approximate area to sample from.
    #Now let's perform a slightly more refined search
    s_opt_loc = s_list.index(s_opt)
    print "now re-doing search in [" + str(s_list[s_opt_loc + 1]) + "," + str(
        s_list[s_opt_loc - 1]) + "]"

    #look one value below s_opt and one above s_opt
    #and re-do search for s
    s_final_vec = np.linspace(s_list[s_opt_loc + 1], s_list[s_opt_loc - 1], 10)
    GLS_final_vec = np.zeros(s_final_vec.shape)
    GLS_error_opt = np.inf
    tck_opt = []

    for i, s in enumerate(s_final_vec):

        print "attempting GLS global splines for s= " + str(s)

        GLS_error, tck = GLS_spline_train_val(s,
                                              X_train,
                                              T_train,
                                              U_train,
                                              X_val,
                                              T_val,
                                              U_val,
                                              iterMax,
                                              x_order=3,
                                              t_order=3,
                                              gamma=1.0,
                                              thres=1e-4)
        GLS_final_vec[i] = GLS_error

        #compare to current best value:
        if GLS_error < GLS_error_opt:
            #if smaller GLS value, then re-set
            GLS_error_opt = GLS_error
            tck_opt = tck
            s_opt = s

    with open("data/" + dataset + "_result.txt", 'wb') as f:
        f.write("Global NCV splines completed for " + dataset + "at \n")
        f.write(time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime()) + "\n")
        f.write("Global s search considered \n")
        f.write(str(s_list) + " \n")
        f.write("which resulted in errors \n")
        f.write(str(GLS_list) + "\n")
        f.write("Optimal s occured at s =" + str(s_opt) +
                "from local choice of \n")
        f.write(str(s_final_vec) + " \n")
        f.write("With GLS errors \n")
        f.write(str(GLS_final_vec) + " \n")

    U_pred = bisplev(un(X), un(T), tck_opt, dx=0, dy=0)
    U_x_pred = bisplev(un(X), un(T), tck_opt, dx=1, dy=0)
    U_xx_pred = bisplev(un(X), un(T), tck_opt, dx=2, dy=0)
    U_t_pred = bisplev(un(X), un(T), tck_opt, dx=0, dy=1)

    # bring predictions back to original scale
    U_pred = U_max * U_pred + U_min  # un-normalized prediction
    U_x_pred = U_max * U_x_pred  # un-normalized prediction
    U_xx_pred = U_max * U_xx_pred  # un-normalized prediction
    U_t_pred = U_max * U_t_pred  # un-normalized prediction

    # store everything in dictionary
    surface_data = {}
    surface_data['inputs'] = [U_pred, U_x_pred, U_xx_pred]
    surface_data['outputs'] = [U_t_pred]
    surface_data['indep_vars'] = [X, T]
    surface_data['input_names'] = ['U', 'U_x', 'U_xx']
    surface_data['output_names'] = ['U_t']
    surface_data['indep_var_names'] = ['X', 'T']

    # save the data
    np.save('data/' + dataset + '_global_NCV_bisplines_' + str(x_order),
            surface_data)