Пример #1
0
def get_sim_matrix(load_sim_matrix):
    raw = pd.read_csv('books_metadata/ratings.csv')
    if load_sim_matrix is False:
        raw = pd.read_csv('books_metadata/ratings.csv')
        raw = raw[raw['book_id'] <= 1900]
        raw.drop_duplicates(inplace=True)
        print('we have', str(raw.shape[0]), 'ratings')
        print('the number of unique users we have is:',
              len(raw.user_id.unique()))
        print('the number of unique books we have is:',
              len(raw.book_id.unique()))

        rawTrain = raw[['user_id', 'book_id', 'rating']]
        rawTrain, rawHoldout = train_test_split(raw, test_size=0.25)
        reader = surprise.Reader(rating_scale=(1, 5))
        data = surprise.Dataset.load_from_df(rawTrain, reader)

        sim_options = {'name': 'cosine', 'user_based': False}
        collabKNN = surprise.KNNWithMeans(k=100, sim_options=sim_options)
        kSplit = surprise.model_selection.split.KFold(n_splits=2,
                                                      shuffle=False)
        for trainset, testset in kSplit.split(data):
            collabKNN.fit(trainset)
            predictionsKNN = collabKNN.test(testset)
            surprise.accuracy.rmse(predictionsKNN, verbose=True)

        sim_matrix = collabKNN.compute_similarities()
        with open('books_sim_matrix', 'wb') as output:
            pickle.dump(sim_matrix, output, protocol=pickle.HIGHEST_PROTOCOL)
        return sim_matrix

    with open('books_sim_matrix', 'rb') as input:
        sim_matrix = pickle.load(input)
        return sim_matrix
Пример #2
0
def train(ratings, k_neighbors, k_folds):
    """
    Train a model and return it. Then we can use the model and evaluate it elsewhere
    @param ratings dataframe pandas dataframe to train on, with columns UserId, MovieId, Ratings
    @param k_neighbors number of neighbors to examine
    @param k_folds number of folds for cross validation
    @returns List of (algo, test data)
    We can call methods such as `test` and `evaluate` on this object 
    """

    train_data, test_data = cv.train_test_split(ratings, test_size=0.20)
    reader = sp.Reader(rating_scale=(1, 5))

    trainset = sp.Dataset.load_from_df(train_data, reader)
    testset = sp.Dataset.load_from_df(test_data, reader)

    trainset.split(n_folds=k_folds)

    similarity_options = {'name': 'pearson', 'user_based': False}
    algo = sp.KNNWithMeans(sim_options=similarity_options,
                           k=k_neighbors,
                           min_k=5)

    for _trainset, _ in trainset.folds():
        algo.train(_trainset)

    testset = testset.build_full_trainset().build_testset()
    return (algo, testset)
Пример #3
0
def meansKNN(train, test):
    """
    Run the KNN means model from Surprise library.
    @param train: the training set in the Surprise format.
    @param test: the test set in the Surprise format.
    @return: the predictions in a numpy array.
    """
    algo = spr.KNNWithMeans()
    algo.fit(train)
    predictions = algo.test(test)
    return get_predictions(predictions)
Пример #4
0
def algo_tester(data_object):
    '''
  Produces a dataframe displaying all the different RMSE's, test & train times of the different surprise algorithms

  ---Parameters---
  data_object(variable) created from the read_data_surprise function

  ---Returns---
  returns a dataframe where you can compare the performance of different algorithms
  '''
    benchmark = []
    algos = [
        sp.SVDpp(),
        sp.SVD(),
        sp.SlopeOne(),
        sp.NMF(),
        sp.NormalPredictor(),
        sp.KNNBaseline(),
        sp.KNNBasic(),
        sp.KNNWithMeans(),
        sp.KNNWithZScore(),
        sp.BaselineOnly(),
        sp.CoClustering()
    ]

    # Iterate over all algorithms
    for algorithm in algos:
        # Perform cross validation
        results = cross_validate(algorithm,
                                 data_object,
                                 measures=['RMSE'],
                                 cv=3,
                                 verbose=False)

        # Get results & append algorithm name
        tmp = pd.DataFrame.from_dict(results).mean(axis=0)
        tmp = tmp.append(
            pd.Series([str(algorithm).split(' ')[0].split('.')[-1]],
                      index=['Algorithm']))
        benchmark.append(tmp)

    benchmark = pd.DataFrame(benchmark).set_index('Algorithm').sort_values(
        'test_rmse')
    return benchmark
Пример #5
0
uid_list = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
# TODO - 2-1-1. KNNBasic, cosine
sim_options = {'name': 'cosine'}
algo = surprise.KNNBasic(sim_options=sim_options)
algo.fit(trainset)
results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
with open('2-1-1_results.txt', 'w') as f:
    for uid, ratings in sorted(results.items(), key=lambda x: int(x[0])):
        f.write('User ID %s top-10 results\n' % uid)
        for iid, score in ratings:
            f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
        f.write('\n')

# TODO - 2-1-2. KNNWithMeans, pearson
sim_options2 = {'name': 'pearson'}
algo = surprise.KNNWithMeans(sim_options=sim_options2)
algo.fit(trainset)
results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
with open('2-1-2_results.txt', 'w') as f:
    for uid, ratings in sorted(results.items(), key=lambda x: int(x[0])):
        f.write('User ID %s top-10 results\n' % uid)
        for iid, score in ratings:
            f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
        f.write('\n')

# # TODO - 2-2. Best Model
bsl_options_ub = {'n_epochs': 30, 'method': 'als', 'reg_i': 10, 'reg_u': 0}
sim_options_ub = {'name': 'msd', 'min_support': 1, 'user_based': True}

best_algo_ub = surprise.KNNBaseline(sim_options=sim_options_ub,
                                    bsl_options=bsl_options_ub,
Пример #6
0
def main(args):

    parser = argparse.ArgumentParser(description= \
        'Deploys recommendation algorithms and outputs the recommendations list',\
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument("--pickleLoadPath", type=str, action='store', \
        help= 'If set=> load topN recoms from pickle file')
    parser.add_argument("--pickleSavePath",
                        type=str,
                        action='store',
                        help='If set => Output .pickle file.')

    parser.add_argument("--proc", type=int, default=multiprocessing.cpu_count(), \
        action='store', \
        help= 'Number of processes to spawn for topN computation\n' +
        'default is number of processors.')
    parser.add_argument("--update_freq", type=int, default=1, action='store', \
        help= 'Number of clicks after which the model is updated')
    parser.add_argument("--topN_list", type=int, nargs="+", required=True, \
        help= 'e.g., --topN_list 5 10 50\n' \
        + 'topN=max(topN_list); the rest of the values are used for evaluation.')
    parser.add_argument("--drop_ratio", type=int, default=0, action='store', \
        help= 'Number of random events to remove from the training set;\n' + \
        'default is 0; Currently not implemented for librec.')
    parser.add_argument("--evalTrain", dest='evalTrain', action='store_true', \
        help='If set => evaluate on training set using k-fold validation.\n' \
            + 'Else => evaluate only on test set')

    parser.add_argument("--dataset", type=str, action='store', \
        help= 'Full path to the dataset.\n' + \
        'Must give --testSize and --validSize for the split')
    parser.add_argument("--testSize",
                        type=int,
                        default=0,
                        action='store',
                        help='TestSet size; default is 0 => no test set')
    parser.add_argument("--validSize", type=int, default=2000, action='store', \
        help= 'Validation Set size; default is 2000.')
    parser.add_argument("--trainSet", type=str, action='store', \
        help= 'Full path to the trainingSet.csv\n' + \
        'If given the (potential) training set split from --dataset will be overwritten')
    parser.add_argument("--validSet", type=str, action='store', \
        help= 'Full path to the validationSet.csv\n' + \
        'If given the (potential) validation set split from --dataset will be overwritten')
    parser.add_argument("--testSet", type=str, action='store', \
        help= 'Full path to the testSet.csv\n' + \
        'If given the (potential) test set split from --dataset will be overwritten')

    parser.add_argument("--librec_home", type=str, action='store', \
        help= 'Full path to the librec folder cloned from git.')
    parser.add_argument("--config", type=str, action='store', \
        help= 'Full path to the librec .properties file.\n' + \
        'Copy from: https://www.librec.net/dokuwiki/doku.php?id=AlgorithmList')
    parser.add_argument("--surprise_algo", type=str, action='store', \
        help= 'Choose algorithm from surprise lib. Available options:\n' + \
        '--surprise_algo SVD\n' + \
        '--surprise_algo SVDpp\n' + \
        '--surprise_algo PMF\n' + \
        '--surprise_algo NMF\n' + \
        '--surprise_algo KNNWithMeans\n')

    args = parser.parse_args(args)

    random.seed(42)  # reproducability
    np.random.seed(42)

    if args.pickleLoadPath is None:
        """DATA"""
        train, valid, test = splitter.splitData(
              fullDataPath=args.dataset, validSize=args.validSize, testSize=args.testSize, \
              trainSetPath=args.trainSet, validSetPath=args.validSet, testSetPath=args.testSet)
        """RECOMMENDATIONS"""
        if args.surprise_algo == 'SVD':
            algo = surprise.SVD()
        elif args.surprise_algo == 'KNNWithMeans':
            #     sim_options = {'name': 'pearson_baseline', 'shrinkage': 2500, \
            #        'user_based': False, }
            sim_options = {'name': 'cosine', 'user_based': False}
            algo = surprise.KNNWithMeans(k=40, sim_options=sim_options)
        elif args.surprise_algo == 'PMF':
            algo = surprise.SVD(n_factors=5,
                                reg_all=0.12,
                                lr_all=0.005,
                                n_epochs=400)
        elif args.surprise_algo == 'NMF':
            algo = surprise.NMF(n_factors=5, n_epochs=400)
        elif args.surprise_algo == 'SVDpp':
            algo = surprise.SVDpp()

        testList = []  # output recommendations for the last element
        if len(test) > 0:
            testList.append(test)
        if len(valid) > 0:
            testList.append(valid)

        for test in testList:
            if args.librec_home is None:
                recs = surprise_recom(train, test, algo, drop_ratio=args.drop_ratio, \
                    update_freq=args.update_freq, N_list=args.topN_list, num=args.proc, \
                    evalTrain=args.evalTrain)
            else:
                recs = librec_recom(train, test, args.librec_home, args.config, \
                    update_freq=args.update_freq, N_list=args.topN_list, num=args.proc, \
                    evalTrain=args.evalTrain)

        if not args.pickleSavePath is None:
            with open(args.pickleSavePath, 'wb') as handle:
                pickle.dump(recs, handle)

    else:
        with open(args.pickleLoadPath, 'rb') as handle:
            recs = pickle.load(handle)
Пример #7
0
from surprise import model_selection
import pandas as pd
import csv


def read_train_data(path):
    file_path = os.path.normpath(path)
    reader = surprise.Reader(line_format='timestamp user item rating', sep=',')
    data = surprise.Dataset.load_from_file(file_path, reader=reader)
    return data


movie_train = read_train_data('E:/train_v2.csv')
print(movie_train.raw_ratings)

knn_estimator = surprise.KNNWithMeans()
knn_grid = {
    'k': [10, 20],
    'sim_options': {
        'name': ['cosine'],
        'min_support': [1, 5],
        'user_based': [False]
    }
}
knn_grid_estimator = model_selection.GridSearchCV(knn_estimator,
                                                  knn_grid,
                                                  measures=['rmse'],
                                                  cv=3)
#do grid search using cv strategy
knn_grid_estimator.fit(movie_train)
print(knn_grid_estimator.best_score['rmse'])
Пример #8
0
def main(train_df, target_df, cache_name="test", force_recompute=[]):
    """Train multiple models on train_df and predicts target_df

    Predictions are cached. If the indices don't match the indices of
    target_df, the cache is discarded.

    By default, if a method was already computed it is not recomputed again
    (except if the method name is listed in force_recompute). cache_name
    is the name to use to read and write the cache.

    Arguments:
        train_df {dataframe} -- Training dataframe
        target_df {dataframe} -- Testing dataframe

    Keyword Arguments:
        cache_name {str} -- Name to use for caching (default: {"test"})
        force_recompute {list} -- Name(s) of methods to recompute, whether or
        not it was already computed. Useful to only recompute single methods
        without discarding the rest. (default: {[]})

    Returns:
        Dataframe -- Dataframe with predictions for each methods as columns,
        IDs as indices
    """
    global algo_in_use
    CACHED_DF_FILENAME = os.path.dirname(
        os.path.abspath(__file__)) +\
        "/cache/cached_predictions_{}.pkl".format(cache_name)
    train_df = preprocess_df(train_df)
    trainset = pandas_to_data(train_df)
    ids_to_predict = target_df["Id"].to_list()

    # try to retrieve backup dataframe
    try:
        print("Retrieving cached predictions")
        all_algos_preds_df = pd.read_pickle(CACHED_DF_FILENAME)
        print("Ensuring cached IDs match given IDs")
        assert sorted(ids_to_predict) == sorted(
            all_algos_preds_df.index.values)
        print("Indices match, continuing")
    except (FileNotFoundError, AssertionError):
        print("No valid cached predictions found")
        all_algos_preds_df = pd.DataFrame(ids_to_predict, columns=["Id"])
        all_algos_preds_df.set_index("Id", inplace=True)

    all_algos = {
        "SVD": spr.SVD(n_factors=200, n_epochs=100),
        "Baseline": spr.BaselineOnly(),
        "NMF": spr.NMF(n_factors=30, n_epochs=100),
        "Slope One": spr.SlopeOne(),
        "KNN Basic": spr.KNNBasic(k=60),
        "KNN Means": spr.KNNWithMeans(k=60),
        "KNN Baseline": spr.KNNBaseline(),
        "KNN Zscore": spr.KNNWithZScore(k=60),
        "SVD ++": spr.SVDpp(n_factors=40, n_epochs=100),
        "Co Clustering": spr.CoClustering()
    }

    for name in all_algos:
        print("##### {} ####".format(name))
        if name in force_recompute and name in all_algos_preds_df.columns:
            all_algos_preds_df.drop(name, axis=1, inplace=True)
        if name in all_algos_preds_df.columns:
            print("Already computed {}, skipping".format(name))
            continue
        algo = all_algos[name]
        time.sleep(1)
        algo.fit(trainset)
        time.sleep(1)
        algo_in_use = algo
        print("Generating predictions...")
        predictions = parallelize_predictions(ids_to_predict, 80)
        print("Done. Merging with previous results")
        this_algo_preds_df = pd.DataFrame(predictions, columns=["Id", name])
        this_algo_preds_df.set_index("Id", inplace=True)
        all_algos_preds_df = pd.merge(all_algos_preds_df,
                                      this_algo_preds_df,
                                      left_index=True,
                                      right_index=True)
        all_algos_preds_df.to_pickle(CACHED_DF_FILENAME)
    print("DONE computing surprize")
    return all_algos_preds_df
    train_path = path + '/Data/train_format.txt'

    train_reader = Reader(line_format='user item rating timestamp',
                          sep=',',
                          rating_scale=(0, 5))
    trainset = Dataset.load_from_file(train_path, reader=train_reader)
    trainset = trainset.build_full_trainset()

    if args.model == 'NormalPredictor':
        model = surprise.NormalPredictor()
    elif args.model == 'BaselineOnly':
        model = surprise.BaselineOnly()
    elif args.model == 'KNNBasic':
        model = surprise.KNNBasic()
    elif args.model == 'KNNWithMeans':
        model = surprise.KNNWithMeans()
    elif args.model == 'KNNWithZScore':
        model = surprise.KNNWithZScore()
    elif args.model == 'KNNBaseline':
        model = surprise.KNNBaseline()
    elif args.model == 'SVD':
        model = surprise.SVD()
    elif args.model == 'SVDpp':
        model = surprise.SVDpp(verbose=True)
    elif args.model == 'NMF':
        model = surprise.NMF()
    elif args.model == 'SlopeOne':
        model = surprise.SlopeOne()
    elif args.model == 'CoClustering':
        model = surprise.CoClustering()
Пример #10
0
normalPredictor = surprise.NormalPredictor()
normalPredictor_temp = surprise.model_selection.cross_validate(
    normalPredictor, rating_data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
print('normalPredictor--------------')
print(normalPredictor_temp)
baselineOnly = surprise.BaselineOnly()
baselineOnly_temp = surprise.model_selection.cross_validate(
    baselineOnly, rating_data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
print('baselineOnly-----------------')
print(baselineOnly_temp)
knnBasic = surprise.KNNBasic()
knnBasic_temp = surprise.model_selection.cross_validate(
    knnBasic, rating_data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
print('knnBasic-----------------')
print(knnBasic_temp)
knnWithMeans = surprise.KNNWithMeans()
knnWithMeans_temp = surprise.model_selection.cross_validate(
    knnWithMeans, rating_data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
print('knnWithMeans-----------------')
print(knnWithMeans_temp)
knnBaseline = surprise.KNNBaseline()
knnBaseline_temp = surprise.model_selection.cross_validate(
    knnBaseline, rating_data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
print('knnBaseline-----------------')
print(knnBaseline_temp)
svdpp = surprise.SVDpp()
svdpp_temp = surprise.model_selection.cross_validate(svdpp,
                                                     rating_data,
                                                     measures=['RMSE', 'MAE'],
                                                     cv=5,
                                                     verbose=True)
Пример #11
0
# with open('result.txt', 'w') as file:
#     for est_n, true_n in GridList:
#         precisions = []
#         recalls = []
#         for trainset, testset in kf.split(data):
#             algo.fit(trainset)
#             predictions = algo.test(testset, verbose=False)
#             prec, rec = precision_recall(predictions, est_n, true_n)
#             precisions.append(prec)
#             recalls.append(rec)
#             # precisions, recalls = precision_recall_at_k(predictions)
#             # # Precision and recall can then be averaged over all users
#             # precision.append(sum(prec for prec in precisions.values()) / len(precisions))
#             # recall.append(sum(rec for rec in recalls.values()) / len(recalls))
#             # mae.append(accuracy.mae(predictions))
#             # rmse.append(accuracy.rmse(predictions))
#
#         precision = sum(precisions) / 5
#         recall = sum(recalls) / 5
#         print(precision,recall)
#         file.write(str(precision)+'\n')
#         file.write(str(recall)+'\n')
# print(sum(mae) / 5)
# print(sum(rmse) / 5)

cross_validate(surprise.BaselineOnly(), data, cv=5, verbose=True)
cross_validate(surprise.KNNBasic(), data, cv=5, verbose=True)
cross_validate(surprise.KNNWithMeans(), data, cv=5, verbose=True)
cross_validate(surprise.KNNBaseline(), data, cv=5, verbose=True)
cross_validate(surprise.SVD(), data, cv=5, verbose=True)
Пример #12
0
bsl_options = {'method': 'sgd',
             'learning_rate': .0005
             }

#bsl_options = {'method': 'sgd',
#             'learning_rate': .0005
#             }

sim_options = {'name': 'cosine', 'min_support': 5,
               'user_based': True, 
               }

algo1 = surprise.KNNBasic(sim_options=sim_options)

algo2 = surprise.KNNWithMeans(k=15, min_k=5,
                     sim_options=sim_options)

algo3 = surprise.SVD(n_factors=20000, n_epochs=20, biased=False,
            init_mean=0, init_std_dev=0.1, lr_all=0.005,
            lr_bu=None, lr_bi=None, lr_qi=None, reg_all=None, reg_bu=0,
            reg_bi=0, reg_pu=0, reg_qi=0, verbose=True)

#algo4 = surprise.SVDpp(n_factors=20, n_epochs=20, init_mean=0, init_std_dev=0.1,
#                       lr_all=0.005, reg_all=None, verbose=True)

print('Training model...')
algo1.train(trainset)
print('Making predictions...')
predictions = algo1.test(test_set)
print('Evaluating results...')
surprise.accuracy.rmse(predictions, verbose=True)
Пример #13
0
def part3():
    file_path = 'DMA_project2_team%02d_part2_UIR.csv' % team
    reader = Reader(line_format='user item rating',
                    sep=',',
                    rating_scale=(1, 10),
                    skip_lines=1)
    data = Dataset.load_from_file(file_path, reader=reader)

    trainset = data.build_full_trainset()
    testset = trainset.build_anti_testset()

    # TODO: Requirement 3-2. User-based Recommendation
    uid_list = [
        'ffffbe8d854a4a5a8ab1a381224f5b80', 'ffe2f26d5c174e13b565d026e1d8c503',
        'ffdccaff893246519b64d76c3561d8c7', 'ffdb001850984ce69c5f91360ac16e9c',
        'ffca7b070c9d41e98eba01d23a920d52'
    ]
    # TODO - set algorithm for 3-2-1
    algo = surprise.KNNBasic(k=40,
                             min_k=1,
                             sim_options={
                                 'name': 'cosine',
                                 'user_based': True
                             },
                             verbose=True)
    algo.fit(trainset)
    results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
    with open('3-2-1.txt', 'w') as f:
        for uid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('User ID %s top-10 results\n' % uid)
            for iid, score in ratings:
                f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
            f.write('\n')

    # TODO - set algorithm for 3-2-2
    algo = surprise.KNNWithMeans(k=40,
                                 min_k=1,
                                 sim_options={
                                     'name': 'pearson',
                                     'user_based': True
                                 },
                                 verbose=True)
    algo.fit(trainset)
    results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
    with open('3-2-2.txt', 'w') as f:
        for uid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('User ID %s top-10 results\n' % uid)
            for iid, score in ratings:
                f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
            f.write('\n')

    # TODO - 3-2-3. Best Model
    kfold = KFold(n_splits=5, random_state=0)
    parameters = {
        'k': [30, 40, 50],
        'min_k': [1],
        'sim_options': {
            'name': ['pearson', 'cosine'],
            'user_based': [True]
        }
    }

    # Select the best algo with grid search.
    print('Grid Search for user based model...')
    grid_KNNBasic = GridSearchCV(surprise.KNNBasic,
                                 measures=['rmse'],
                                 param_grid=parameters,
                                 cv=kfold)
    grid_KNNWithMeans = GridSearchCV(surprise.KNNWithMeans,
                                     measures=['rmse'],
                                     param_grid=parameters,
                                     cv=kfold)

    grid_KNNBasic.fit(data)
    grid_KNNWithMeans.fit(data)

    best_KNNBasic_score = grid_KNNBasic.best_score['rmse']
    best_KNNWithMeans_score = grid_KNNWithMeans.best_score['rmse']

    if best_KNNBasic_score < best_KNNWithMeans_score:
        algo_name = 'KNNBasic'
        best_algo_ub = grid_KNNBasic.best_estimator['rmse']
        with_parameters = grid_KNNBasic.best_params['rmse']
        score = best_KNNBasic_score

    else:
        algo_name = 'KNNWithMeans'
        best_algo_ub = grid_KNNWithMeans.best_estimator['rmse']
        with_parameters = grid_KNNWithMeans.best_params['rmse']
        score = best_KNNWithMeans_score

    print('The best UB algorithm is', algo_name, 'with', with_parameters,
          '\nscore:', score)

    # TODO: Requirement 3-3. Item-based Recommendation
    iid_list = ['art', 'teaching', 'career', 'college', 'medicine']
    # TODO - set algorithm for 3-3-1
    algo = surprise.KNNBasic(k=40,
                             min_k=1,
                             sim_options={
                                 'name': 'cosine',
                                 'user_based': False
                             },
                             verbose=True)
    algo.fit(trainset)
    results = get_top_n(algo, testset, iid_list, n=10, user_based=False)
    with open('3-3-1.txt', 'w') as f:
        for iid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('Item ID %s top-10 results\n' % iid)
            for uid, score in ratings:
                f.write('User ID %s\tscore %s\n' % (uid, str(score)))
            f.write('\n')

    # TODO - set algorithm for 3-3-2
    algo = surprise.KNNWithMeans(k=40,
                                 min_k=1,
                                 sim_options={
                                     'name': 'pearson',
                                     'user_based': False
                                 },
                                 verbose=True)
    algo.fit(trainset)
    results = get_top_n(algo, testset, iid_list, n=10, user_based=False)
    with open('3-3-2.txt', 'w') as f:
        for iid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('Item ID %s top-10 results\n' % iid)
            for uid, score in ratings:
                f.write('User ID %s\tscore %s\n' % (uid, str(score)))
            f.write('\n')

    # TODO - 3-3-3. Best Model
    kfold = KFold(n_splits=5, random_state=0)
    parameters = {
        'k': [30, 40, 50],
        'min_k': [1],
        'sim_options': {
            'name': ['pearson', 'cosine'],
            'user_based': [False]
        }
    }

    # Select the best algo with grid search.
    print('Grid Search for item based model...')
    grid_KNNBasic = GridSearchCV(surprise.KNNBasic,
                                 measures=['rmse'],
                                 param_grid=parameters,
                                 cv=kfold)
    grid_KNNWithMeans = GridSearchCV(surprise.KNNWithMeans,
                                     measures=['rmse'],
                                     param_grid=parameters,
                                     cv=kfold)

    grid_KNNBasic.fit(data)
    grid_KNNWithMeans.fit(data)

    best_KNNBasic_score = grid_KNNBasic.best_score['rmse']
    best_KNNWithMeans_score = grid_KNNWithMeans.best_score['rmse']

    if best_KNNBasic_score < best_KNNWithMeans_score:
        algo_name = 'KNNBasic'
        best_algo_ub = grid_KNNBasic.best_estimator['rmse']
        with_parameters = grid_KNNBasic.best_params['rmse']
        score = best_KNNBasic_score
    else:
        algo_name = 'KNNWithMeans'
        best_algo_ub = grid_KNNWithMeans.best_estimator['rmse']
        with_parameters = grid_KNNWithMeans.best_params['rmse']
        score = best_KNNWithMeans_score

    print('The best IB algorithm is', algo_name, 'with', with_parameters,
          '\nscore:', score)

    # TODO: Requirement 3-4. Matrix-factorization Recommendation
    # TODO - set algorithm for 3-4-1
    algo = surprise.SVD(n_factors=100, n_epochs=50, biased=False)
    algo.fit(trainset)
    results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
    with open('3-4-1.txt', 'w') as f:
        for uid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('User ID %s top-10 results\n' % uid)
            for iid, score in ratings:
                f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
            f.write('\n')

    # TODO - set algorithm for 3-4-2
    algo = surprise.SVD(n_factors=200, n_epochs=100, biased=True)
    algo.fit(trainset)
    results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
    with open('3-4-2.txt', 'w') as f:
        for uid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('User ID %s top-10 results\n' % uid)
            for iid, score in ratings:
                f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
            f.write('\n')

    # TODO - set algorithm for 3-4-3
    algo = surprise.SVDpp(n_factors=100, n_epochs=50)
    algo.fit(trainset)
    results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
    with open('3-4-3.txt', 'w') as f:
        for uid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('User ID %s top-10 results\n' % uid)
            for iid, score in ratings:
                f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
            f.write('\n')

    # TODO - set algorithm for 3-4-4
    algo = surprise.SVDpp(n_factors=100, n_epochs=100)
    algo.fit(trainset)
    results = get_top_n(algo, testset, uid_list, n=10, user_based=True)
    with open('3-4-4.txt', 'w') as f:
        for uid, ratings in sorted(results.items(), key=lambda x: x[0]):
            f.write('User ID %s top-10 results\n' % uid)
            for iid, score in ratings:
                f.write('Item ID %s\tscore %s\n' % (iid, str(score)))
            f.write('\n')

    # TODO - 3-4-5. Best Model
    kfold = KFold(n_splits=5, random_state=0)
    parameters_SVD = {
        'n_factors': [50, 100, 200],
        'n_epochs': [10, 50, 100, 200],
        'biased': [True, False]
    }
    grid_SVD = GridSearchCV(surprise.SVD,
                            measures=['rmse'],
                            param_grid=parameters_SVD,
                            cv=kfold)
    parameters_SVDpp = {
        'n_factors': [50, 100, 200],
        'n_epochs': [10, 50, 100, 200]
    }
    grid_SVDpp = GridSearchCV(surprise.SVDpp,
                              measures=['rmse'],
                              param_grid=parameters_SVDpp,
                              cv=kfold)

    grid_SVD.fit(data)
    grid_SVDpp.fit(data)

    best_SVD_score = grid_SVD.best_score['rmse']
    best_SVDpp_score = grid_SVDpp.best_score['rmse']

    if best_SVD_score < best_SVDpp_score:
        algo_name = 'SVD'
        best_algo_mf = grid_SVD.best_estimator['rmse']
        with_parameters = grid_SVD.best_params['rmse']
        score = best_SVD_score

    else:
        algo_name = 'SVDpp'
        best_algo_mf = grid_SVDpp.best_estimator['rmse']
        with_parameters = grid_SVDpp.best_params['rmse']
        score = best_SVDpp_score

    print('The best MF algorithm is', algo_name, 'with', with_parameters,
          '\nscore:', score)
Пример #14
0
print("Done.")

# defining the number of folds = 5
print("Performing splits...")
kf = sp.model_selection.KFold(n_splits=5, random_state=0)
print("Done.")

###
### PART 1.1
###
'''
application of all algorithms for recommendation made available by 
“Surprise” libraries, according to their default configuration.
'''
algorithms = [sp.NormalPredictor(), sp.BaselineOnly(), sp.KNNBasic(),\
              sp.KNNWithMeans(), sp.KNNWithZScore(), sp.KNNBaseline(),\
              sp.SVD(), sp.SVDpp(), sp.NMF(), sp.SlopeOne(), sp.CoClustering()]
for elem in algorithms:
    start_time = time.time()
    algo = elem
    sp.model_selection.cross_validate(algo, data, measures=['RMSE'], \
                                      cv=kf, n_jobs = 2, verbose=True)
    print("--- %s seconds ---" % (time.time() - start_time))
    print()

###
### PART 1.2
###
'''
Improvement of the quality of both KNNBaseline and SVD methods, 
by performing hyper-parameters tuning over 5-folds
Пример #15
0
import surprise as sp
from surprise import Dataset
from surprise.model_selection import cross_validate
import NetflixDataLoad

#for 100000 rows for fast processing
data = Dataset.load_from_df(
    NetflixDataLoad.df_filterd[['Cust_Id', 'Movie_Id', 'Rating']][:100000])

n_folds = 5

for algo in [sp.SVD(), sp.SVDpp(), sp.KNNBasic(), sp.KNNWithMeans()]:
    print(
        cross_validate(algo,
                       data,
                       measures=['RMSE', 'MAE'],
                       cv=n_folds,
                       verbose=True))

# Output Example
# Evaluating RMSE, MAE of algorithm SVD on 5 split(s).
#
#             Fold 1  Fold 2  Fold 3  Fold 4  Fold 5  Mean    Std
# RMSE        0.9311  0.9370  0.9320  0.9317  0.9391  0.9342  0.0032
# MAE         0.7350  0.7375  0.7341  0.7342  0.7375  0.7357  0.0015
# Fit time    6.53    7.11    7.23    7.15    3.99    6.40    1.23
# Test time   0.26    0.26    0.25    0.15    0.13    0.21    0.06
Пример #16
0
}

mean_ap = []
precision = []
recall = []
fscore = []
normalized_DCG = []
mean_ap_train = []
precision_train = []
recall_train = []
fscore_train = []
normalized_DCG_train = []

for k_val in ks:
    print(k_val)
    algo = surprise.KNNWithMeans(k=k_val, sim_options=sim_options)
    pr = 0
    re = 0
    fs = 0
    ap = 0
    nd = 0
    pr_train = 0
    re_train = 0
    fs_train = 0
    ap_train = 0
    nd_train = 0
    for trainset, testset in data.folds():
        algo.train(trainset)
        predictions_on_test = algo.test(testset)

        precisions_test, recalls_test = precision_recall_at_k(
Пример #17
0
# A reader is needed but only the rating_scale param is requiered.
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(train_df, reader)

sim_options = {'user_based': [False]}

results = []

# Iterate over all algorithms
for algorithm in [
        SVD(),
        surprise.NMF(),
        surprise.SlopeOne(),
        surprise.CoClustering(),
        surprise.KNNBasic(sim_options=sim_options),
        surprise.KNNWithMeans(sim_options=sim_options),
        surprise.KNNWithZScore(sim_options=sim_options),
        surprise.KNNBaseline(sim_options=sim_options),
        surprise.NormalPredictor(),
        surprise.BaselineOnly()
]:

    # Get string of algname for naming a pickle file a useful name
    alg_name = str(algorithm)
    alg_name = alg_name[alg_name.find('.') + 1:]
    alg_name = alg_name[alg_name.find('.') + 1:]
    alg_name = alg_name[alg_name.find('.') + 1:]
    alg_name = alg_name[:alg_name.find('object') - 1]

    # Take a look at cross validation results to compare model types
    print('\n\nModeling: {}\n'.format(str(alg_name)))
          epochs=2,
          validation_split=0.1,
          shuffle=True)

y_pred = model.predict([df_hybrid_test['User'], df_hybrid_test['Movie'], test_tfidf])
y_true = df_hybrid_test['Rating'].values

rmse = np.sqrt(mean_squared_error(y_pred=y_pred, y_true=y_true))
print('\n\nTesting Result With Keras Hybrid Deep Learning: {:.4f} RMSE'.format(rmse))

# Load dataset into surprise specific data-structure
data = sp.Dataset.load_from_df(df_filterd[['User', 'Movie', 'Rating']].sample(20000), sp.Reader())

benchmark = []
# Iterate over all algorithms
for algorithm in [sp.SVD(), sp.SVDpp(), sp.SlopeOne(), sp.NMF(), sp.NormalPredictor(), sp.KNNBaseline(), sp.KNNBasic(), sp.KNNWithMeans(), sp.KNNWithZScore(), sp.BaselineOnly(), sp.CoClustering()]:
    # Perform cross validation
    results = cross_validate(algorithm, data, measures=['RMSE', 'MAE'], cv=3, verbose=False)
    
    # Get results & append algorithm name
    tmp = pd.DataFrame.from_dict(results).mean(axis=0)
    tmp = tmp.append(pd.Series([str(algorithm).split(' ')[0].split('.')[-1]], index=['Algorithm']))
    
    # Store data
    benchmark.append(tmp)
    
    # Store results
surprise_results = pd.DataFrame(benchmark).set_index('Algorithm').sort_values('test_rmse', ascending=False)

# Get data
data = surprise_results[['test_rmse', 'test_mae']]
Пример #19
0
    for j in tp.columns[1:-1]:
        tp[j] = tp[j].replace(np.nan, tpmean[j])
    mb += [tp]
mb = pd.concat(mb, axis=0, ignore_index=True)

# Model Based
df = pd.read_csv(
    'C:/Users/mayij/Desktop/DOC/GITHUB/MLGH/collaborative filtering/movielens.csv'
)
reader = surprise.Reader(rating_scale=(1, 5))
data = surprise.Dataset.load_from_df(df[['user', 'item', 'rating']], reader)
trainset = data.build_full_trainset()

# KNN
algo = surprise.KNNWithMeans(sim_options={
    'name': 'cosine',
    'user_based': False
})
algo.fit(trainset)

gs = surprise.model_selection.GridSearchCV(surprise.KNNWithMeans, {
    'sim_options': {
        'name': ['msd', 'cosine'],
        'min_support': [3, 4, 5],
        'user_based': [False, True]
    }
},
                                           measures=['rmse', 'mae'],
                                           cv=3)
gs.fit(data)
print(gs.best_score['rmse'])
print(gs.best_params['rmse'])