Пример #1
0
    def test(self):
        theta2d = eigen.Vector2d.Random() * 10
        theta = theta2d[0]

        self.assertAlmostEqual(
            (sva.RotX(theta) -
             eigen.AngleAxisd(-theta, eigen.Vector3d.UnitX()).matrix()).norm(),
            0,
            delta=TOL)
        self.assertAlmostEqual(
            (sva.RotY(theta) -
             eigen.AngleAxisd(-theta, eigen.Vector3d.UnitY()).matrix()).norm(),
            0,
            delta=TOL)
        self.assertAlmostEqual(
            (sva.RotZ(theta) -
             eigen.AngleAxisd(-theta, eigen.Vector3d.UnitZ()).matrix()).norm(),
            0,
            delta=TOL)
Пример #2
0
    def test(self):
        res = eigen.Vector3d()

        res = sva.rotationError(eigen.Matrix3d.Identity(), sva.RotX(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(np.pi / 2, 0, 0)).norm(),
                               0,
                               delta=TOL)

        res = sva.rotationError(eigen.Matrix3d.Identity(), sva.RotY(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(0, np.pi / 2, 0)).norm(),
                               0,
                               delta=TOL)

        res = sva.rotationError(eigen.Matrix3d.Identity(), sva.RotZ(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(0, 0, np.pi / 2)).norm(),
                               0,
                               delta=TOL)

        res = sva.rotationError(sva.RotZ(np.pi / 4), sva.RotZ(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(0, 0, np.pi / 4)).norm(),
                               0,
                               delta=TOL)
Пример #3
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm(
            True, sva.PTransformd(eigen.Vector3d(-0.5, 0, 0)))
        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)

        mb2, mbc2Init = arms.makeZXZArm(
            True, sva.PTransformd(eigen.Vector3d(0.5, 0, 0)))
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        nrGen = 3
        solver = tasks.qp.QPSolver()

        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b3",
                                       [eigen.Vector3d.Zero()],
                                       sva.RotX(math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        if not LEGACY:
            posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
        else:
            posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2,
                                                1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2,
                                                1)
        comD = (rbdyn.computeCoM(mb1, mbc1Init) + rbdyn.computeCoM(
            mb2, mbc2Init)) / 2 + eigen.Vector3d(0, 0, 0.5)
        multiCoM = tasks.qp.MultiCoMTask(mbs, [0, 1], comD, 10, 500)
        multiCoM.updateInertialParameters(mbs)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

        solver.addTask(posture1Task)
        solver.addTask(posture2Task)

        solver.nrVars(mbs, contVec, [])

        solver.addTask(mbs, multiCoM)
        contCstrSpeed.addToSolver(mbs, solver)

        solver.updateConstrSize()

        self.assertEqual(solver.nrVars(), 3 + 3 + 1 * nrGen)

        for i in range(2000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])
            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

        self.assertAlmostEqual(multiCoM.speed().norm(), 0, delta=1e-3)

        contCstrSpeed.removeFromSolver(solver)
        solver.removeTask(posture1Task)
        solver.removeTask(posture2Task)
        solver.removeTask(multiCoM)
Пример #4
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm()
        mb2, mbc2Init = arms.makeZXZArm()

        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        # Test ContactAccConstr contraint and test PositionTask on the second robot
        solver = tasks.qp.QPSolver()

        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b3",
                                       [eigen.Vector3d.Zero()],
                                       sva.RotX(math.pi / 2), X_b1_b2, 3,
                                       math.tan(math.pi / 4))
        ]

        oriD = sva.RotZ(math.pi / 4)
        if not LEGACY:
            posD = oriD * mbc2Init.bodyPosW[-1].translation()
        else:
            posD = oriD * list(mbc2Init.bodyPosW)[-1].translation()
        posTask = tasks.qp.PositionTask(mbs, 1, "b3", posD)
        posTaskSp = tasks.qp.SetPointTask(mbs, 1, posTask, 1000, 1)

        contCstrAcc = tasks.qp.ContactAccConstr()

        contCstrAcc.addToSolver(solver)
        solver.addTask(posTaskSp)

        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()

        self.assertEqual(solver.nrVars(), 3 + 3 + 3)

        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

        self.assertAlmostEqual(posTask.eval().norm(), 0, delta=1e-5)

        contCstrAcc.removeFromSolver(solver)
        solver.removeTask(posTaskSp)

        # Test ContactSpeedConstr constraint and OrientationTask on the second robot
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        oriTask = tasks.qp.OrientationTask(mbs, 1, "b3", oriD)
        oriTaskSp = tasks.qp.SetPointTask(mbs, 1, oriTask, 1000, 1)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)
        contCstrSpeed.addToSolver(solver)
        solver.addTask(oriTaskSp)

        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])
            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

        self.assertAlmostEqual(oriTask.eval().norm(), 0, delta=1e-5)
Пример #5
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm()
        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)

        mb2, mbc2Init = arms.makeZXZArm(False)
        if not LEGACY:
            mb2InitPos = mbc1Init.bodyPosW[-1].translation()
        else:
            mb2InitPos = list(mbc1Init.bodyPosW)[-1].translation()
        mb2InitOri = eigen.Quaterniond(sva.RotY(math.pi / 2))
        if not LEGACY:
            mbc2Init.q[0] = [
                mb2InitOri.w(),
                mb2InitOri.x(),
                mb2InitOri.y(),
                mb2InitOri.z(),
                mb2InitPos.x(),
                mb2InitPos.y() + 1,
                mb2InitPos.z()
            ]
            mbc2Init.q[0] = [
                mb2InitOri.w(),
                mb2InitOri.x(),
                mb2InitOri.y(),
                mb2InitOri.z(),
                mb2InitPos.x(),
                mb2InitPos.y() + 1,
                mb2InitPos.z()
            ]
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        # Test ContactAccConstr constraint and PositionTask on the second robot
        solver = tasks.qp.QPSolver()

        points = [
            eigen.Vector3d(0.1, 0, 0.1),
            eigen.Vector3d(0.1, 0, -0.1),
            eigen.Vector3d(-0.1, 0, -0.1),
            eigen.Vector3d(-0.1, 0, 0.1),
        ]

        biPoints = [
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
        ]

        nrGen = 4
        biFrames = [
            sva.RotX(math.pi / 4),
            sva.RotX(3 * math.pi / 4),
            sva.RotX(math.pi / 4) * sva.RotY(math.pi / 2),
            sva.RotX(3 * math.pi / 4) * sva.RotY(math.pi / 2),
        ]

        # The fixed robot can pull the other
        contVecFail = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b0", points,
                                       sva.RotX(-math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        # The fixed robot can push the other
        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b0", points,
                                       sva.RotX(math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        # The fixed robot has non coplanar force apply on the other
        contVecBi = [
            tasks.qp.BilateralContact(tasks.qp.ContactId(0, 1, "b3", "b0"),
                                      biPoints, biFrames, X_b1_b2, nrGen, 1)
        ]

        if not LEGACY:
            posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
        else:
            posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2,
                                                1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2,
                                                1)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

        Inf = float("inf")
        torqueMin1 = [[], [-Inf], [-Inf], [-Inf]]
        torqueMax1 = [[], [Inf], [Inf], [Inf]]
        torqueMin2 = [[0, 0, 0, 0, 0, 0], [-Inf], [-Inf], [-Inf]]
        torqueMax2 = [[0, 0, 0, 0, 0, 0], [Inf], [Inf], [Inf]]
        motion1 = tasks.qp.MotionConstr(
            mbs, 0, tasks.TorqueBound(torqueMin1, torqueMax1))
        motion2 = tasks.qp.MotionConstr(
            mbs, 1, tasks.TorqueBound(torqueMin2, torqueMax2))
        plCstr = tasks.qp.PositiveLambda()

        motion1.addToSolver(solver)
        motion2.addToSolver(solver)
        plCstr.addToSolver(solver)

        contCstrSpeed.addToSolver(solver)
        solver.addTask(posture1Task)
        solver.addTask(posture2Task)

        # Check the impossible motion
        solver.nrVars(mbs, contVecFail, [])
        solver.updateConstrSize()
        self.assertEqual(solver.nrVars(), 3 + 9 + 4 * nrGen)
        self.assertFalse(solver.solve(mbs, mbcs))

        # Check the unilateral motion
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

            # Force in the world frame must be the same
            f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
            f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
            self.assertAlmostEqual((f1 + f2).norm(), 0, delta=1e-5)

        # Check the bilateral motion
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        self.assertEqual(solver.nrVars(), 3 + 9 + 4 * nrGen)
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

            # Force in the world frame must be the same
            f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
            f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
            self.assertAlmostEqual((f1 + f2).norm(), 0, delta=1e-5)

        plCstr.removeFromSolver(solver)
        motion2.removeFromSolver(solver)
        motion1.removeFromSolver(solver)
        contCstrSpeed.removeFromSolver(solver)

        solver.removeTask(posture1Task)
        solver.removeTask(posture2Task)
Пример #6
0
def createRobot():
    mb, mbc, mbg = rbdyn.MultiBody(), rbdyn.MultiBodyConfig(
    ), rbdyn.MultiBodyGraph()
    limits = mc_rbdyn_urdf.Limits()
    visual = {}
    collision_tf = {}

    I0 = eigen.Matrix3d([[0.1, 0.0, 0.0], [0.0, 0.05, 0.0], [0.0, 0.0, 0.001]])
    I1 = eigen.Matrix3d([[1.35, 0.0, 0.0], [0.0, 0.05, 0.0], [0.0, 0.0,
                                                              1.251]])
    I2 = eigen.Matrix3d([[0.6, 0.0, 0.0], [0.0, 0.05, 0.0], [0.0, 0.0, 0.501]])
    I3 = eigen.Matrix3d([[0.475, 0.0, 0.0], [0.0, 0.05, 0.0],
                         [0.0, 0.0, 0.376]])
    I4 = eigen.Matrix3d([[0.1, 0.0, 0.0], [0.0, 0.3, 0.0], [0.0, 0.0, 0.251]])

    T0 = sva.PTransformd(eigen.Vector3d(0.1, 0.2, 0.3))
    T1 = sva.PTransformd.Identity()

    b0 = rbdyn.Body(1., eigen.Vector3d.Zero(), I0, "b0")
    b1 = rbdyn.Body(5., eigen.Vector3d(0., 0.5, 0.), I1, "b1")
    b2 = rbdyn.Body(2., eigen.Vector3d(0., 0.5, 0.), I2, "b2")
    b3 = rbdyn.Body(1.5, eigen.Vector3d(0., 0.5, 0.), I3, "b3")
    b4 = rbdyn.Body(1., eigen.Vector3d(0.5, 0., 0.), I4, "b4")

    mbg.addBody(b0)
    mbg.addBody(b1)
    mbg.addBody(b2)
    mbg.addBody(b3)
    mbg.addBody(b4)

    j0 = rbdyn.Joint(rbdyn.Joint.Rev, eigen.Vector3d.UnitX(), True, "j0")
    j1 = rbdyn.Joint(rbdyn.Joint.Rev, eigen.Vector3d.UnitY(), True, "j1")
    j2 = rbdyn.Joint(rbdyn.Joint.Rev, eigen.Vector3d.UnitZ(), True, "j2")
    j3 = rbdyn.Joint(rbdyn.Joint.Rev, eigen.Vector3d.UnitX(), True, "j3")

    mbg.addJoint(j0)
    mbg.addJoint(j1)
    mbg.addJoint(j2)
    mbg.addJoint(j3)

    to = sva.PTransformd(eigen.Vector3d(0, 1, 0))
    from_ = sva.PTransformd.Identity()

    mbg.linkBodies("b0", to, "b1", from_, "j0")
    mbg.linkBodies("b1", to, "b2", from_, "j1")
    mbg.linkBodies("b2", to, "b3", from_, "j2")
    mbg.linkBodies("b1",
                   sva.PTransformd(sva.RotX(1.), eigen.Vector3d(1., 0., 0.)),
                   "b4", from_, "j3")

    mb = mbg.makeMultiBody("b0", True)
    mbc = rbdyn.MultiBodyConfig(mb)
    mbc.zero(mb)

    limits.lower = {
        "j0": [-1.],
        "j1": [-1.],
        "j2": [-1.],
        "j3": [-float('Inf')]
    }
    limits.upper = {"j0": [1.], "j1": [1.], "j2": [1.], "j3": [float('Inf')]}
    limits.velocity = {
        "j0": [10.],
        "j1": [10.],
        "j2": [10.],
        "j3": [float('Inf')]
    }
    limits.torque = {
        "j0": [50.],
        "j1": [50.],
        "j2": [50.],
        "j3": [float('Inf')]
    }

    v1 = mc_rbdyn_urdf.Visual()
    v1.origin = T0
    geometry = mc_rbdyn_urdf.Geometry()
    geometry.type = mc_rbdyn_urdf.Geometry.MESH
    mesh = mc_rbdyn_urdf.GeometryMesh()
    mesh.filename = "test_mesh1.dae"
    geometry.data = mesh
    v1.geometry = geometry

    v2 = mc_rbdyn_urdf.Visual()
    v2.origin = T1
    mesh.filename = "test_mesh2.dae"
    geometry.data = mesh
    v2.geometry = geometry

    visual = {b"b0": [v1, v2]}

    return mb, mbc, mbg, limits, visual, collision_tf
Пример #7
0
    rbd.forwardKinematics(mb, mbc)

    X_s = sva.PTransformd(sva.RotY(-np.pi / 2.), e.Vector3d(0.1, 0., 0.))
    mbv = MultiBodyViz(mbg,
                       mb,
                       endEffectorDict={'b4': (X_s, 0.1, (0., 1., 0.))})

    # test MultiBodyViz
    from tvtk.tools import ivtk
    viewer = ivtk.viewer()
    viewer.size = (640, 480)
    mbv.addActors(viewer.scene)
    mbv.display(mb, mbc)

    # test axis
    from axis import Axis
    a1 = Axis(text='test', length=0.2)
    a1.addActors(viewer.scene)
    a1.X = sva.PTransformd(sva.RotX(np.pi / 2.), e.Vector3d.UnitX())

    # test vector6d
    from vector6d import ForceVecViz, MotionVecViz
    M = sva.MotionVecd(e.Vector3d(0.2, 0.1, 0.), e.Vector3d(0.1, 0., 0.2))
    F = sva.ForceVecd(e.Vector3d(-0.2, -0.1, 0.), e.Vector3d(-0.1, 0., -0.2))
    MV = MotionVecViz(M, a1.X)
    FV = ForceVecViz(
        F, sva.PTransformd(sva.RotX(np.pi / 2.),
                           e.Vector3d.UnitX() * 1.4))
    MV.addActors(viewer.scene)
    FV.addActors(viewer.scene)