from svc.utils import linrange, linspace def tune(**env): prepareData(env=env) train(env=env) forcealignTrn(env=env) smooth(env=env) scale(env=env) res = decodeHldt() return res['cAcc'], res['uCorr'] params = { 'DATA_REDUCTION': linrange(10,100,10), } params = Grid.cartezianGrid(params) value, tuned_params = params.tune(tune, logger=logger) params.writeCSV(os.path.join(env['BUILD_DIR'], 'tune_data_reduction.csv')) env.update(tuned_params) # I know that all data are always the best #all() moveResults()
SCALE_CONCEPT12_RANGE = +-0.6 SCALE_CONCEPT12_STEP = 0.2 for i in range(n_iters): logger.info("_" * 80) logger.info('') logger.info("Setting tuning steps:") logger.info("=====================") logger.info(" SCALE_CONCEPT12_STEP: %.2f" % SCALE_CONCEPT12_STEP) logger.info(" SCALE_PUSHPOP_STEP : %.2f" % SCALE_PUSHPOP_STEP) logger.info("_" * 80) logger.info('') logger.info('') params = { 'SCALE_PUSHPOP': linrange(SCALE_PUSHPOP, SCALE_PUSHPOP_RANGE, SCALE_PUSHPOP_STEP), 'SCALE_CONCEPT12': linrange(SCALE_CONCEPT12, SCALE_CONCEPT12_RANGE, SCALE_CONCEPT12_STEP), } params = Grid.cartezianGrid(params) value, tuned_params = params.tune(tune_scale, logger=logger) if i == 0: fn = 'tune_cued_scale.csv' else: fn = 'tune_cued_scale%d.csv' % (i+1, ) params.writeCSV(os.path.join(env['BUILD_DIR'], fn)) SCALE_CONCEPT12 = tuned_params['SCALE_CONCEPT12'] SCALE_CONCEPT12_RANGE = +-SCALE_CONCEPT12_STEP
settings['DATA_REDUCTION'] = 100 def tune(**env): prepareData(env=env) train(env=env) forcealignTrn(env=env) smooth(env=env) scale(env=env) res = decodeHldt() return res['sActAcc'], res['iF'] # return res['cAcc'], res['uCorr'] params = { 'TRAIN_DATA_REDUCTION': linrange(10, 100, 10), } params = Grid.cartezianGrid(params) value, tuned_params = params.tune(tune, logger=logger) params.writeCSV(os.path.join(env['BUILD_DIR'], 'tune_data_reduction.csv')) env.update(tuned_params) # I know that all data are always the best #all() moveResults()
from svc.utils import linrange, linspace def tune(**env): settings.update(env) all(noDcd=True, moveResults=False) res = decodeHldt() return res['cAcc'], res['uCorr'] if 'test' not in argv: params = { 'TRAIN_DATA_REDUCTION': linrange(5,100,5), } else: params = { 'TRAIN_DATA_REDUCTION': [5, 10], } params = Grid.cartezianGrid(params) value, tuned_params = params.tune(tune, logger=logger) params.writeCSV(os.path.join(env['BUILD_DIR'], 'tune_train_data_reduction.csv')) settings.update(tuned_params) all(moveResults=False)