Пример #1
0
    def test_svgd_mean_double(self):
        n_dims = 50
        n_samples = 20

        fn_grad, mu, precision_matrix = get_normal(n_dims=n_dims, seed=111)
        mu[:4] = np.array([-0.6871, 3.8010, 13.0, 3.0])
        sigma = inv(precision_matrix).diagonal()

        np.random.seed(17)
        theta0 = np.random.normal(0, 1, [n_samples, n_dims])
        theta1 = SVGD(objective_grad=fn_grad, eta=0.05,
                      bandwidth_heuristic='mean').run(theta0, n_iter=1000)
        for n_iter in [500, 500]:
            theta1 = np.vstack([theta1,
                                theta1 + np.random.normal(scale=0.1, size=theta1.shape),
                                theta1 + np.random.normal(scale=0.1, size=theta1.shape)
                                ])
            theta1 = SVGD(objective_grad=fn_grad, eta=0.05,
                          bandwidth_heuristic='mean').run(theta1, n_iter=n_iter)

        theta_mu = np.mean(theta1, axis=0)
        theta_var = np.var(theta1, axis=0)
        print('\nerror:', norm(mu - theta_mu) / mu.shape[0], norm(theta_var - sigma) / sigma.shape[0])
        print('n_samples:', theta1.shape[0])
        print('svgd_adam:\n', theta_mu, theta_var)
        print('ground truth:\n', mu, sigma)
def GMM_test(stepsize=0.01):
    A = np.array([[[1.0,0.0],[0.0,1.0]], [[1.0,0.0],[0.0,1.0]]])
    mu = np.array([[-5.0,-5.0], [5.0,5.0]])
    gmprob = np.array([0.2, 0.8])
    
    model = GMM(mu, A, gmprob)
    
    tik = time()
    x0 = np.random.uniform(-4.0, 4.0, [1000, 2])
    theta = SVGD().update(x0, model.dlnprob, n_iter=1000, stepsize=stepsize)
    tok = time()
    
    print("ground truth: ", mu)
    print("svgd: ", np.mean(theta,axis=0))
    print("time: ", tok-tik)

    plt.scatter(theta.T[0], theta.T[1], s=1)
    plt.show()
Пример #3
0
                bias_initializer=tf.keras.initializers.RandomNormal(
                    mean=0.0, stddev=0.8)))

    # train
    for _ in range(num_iterations):
        grads_list, vars_list, prob_1_x_w_list = [], [], []

        for i in range(num_particles):
            grads, variables, prob_1_x_w = inference(X_train, y_train,
                                                     models[i])
            grads_list.append(grads)
            vars_list.append(variables)
            prob_1_x_w_list.append(prob_1_x_w)

        svgd = SVGD(grads_list=grads_list,
                    vars_list=vars_list,
                    optimizer=grad_optimizer)
        svgd.run()

    # evaluation
    # train
    prob_train_x = tf.reduce_mean(tf.stack(prob_1_x_w_list), axis=0)
    classification = prob_train_x.numpy() > 0.5
    accuracy = np.sum(classification == y_train) / y_train.shape[0]
    print("train accuracy score: {:.2f}".format(accuracy))

    # test
    prob_test_list = []
    for i in range(num_particles):
        _, prob_test = predict(X_test, models[i])
        prob_test_list.append(prob_test)
Пример #4
0
    
        return np.array(return_matrix)
    
if __name__ == '__main__':
    filtered_means = []
    filtered_covs = []
    total_thetas = []
    n_iter = 1000

    time_series = np.round(np.power(np.sin(np.arange(10)+1),2)*10 + 10)

    model = StateSpaceModel()
    num_particles = 10
    x0 = np.random.normal(0,10,[num_particles,2]).astype(float)
    
    theta = SVGD().update(x0,0,x0,time_series, model.grad_overall, n_iter=n_iter, stepsize=0.01)
    total_thetas.append(theta)
    #theta = p(x_0|y_0)

    
   
    filtered_means.append(np.mean(theta,axis=0)[0])
    filtered_covs.append(np.var(theta,axis=0)[0])
    
    for t in range(1,len(time_series)):
      theta = SVGD().update(theta,t,theta, time_series, model.grad_overall, n_iter=n_iter, stepsize=0.01)
      total_thetas.append(theta)
      filtered_means.append(np.mean(theta,axis=0)[0])
      filtered_covs.append(np.var(theta,axis=0)[0])
    
    return_list = filtered_means + filtered_covs
Пример #5
0
    M = 20  # number of particles
    alpha = 1
    inner_iteration = 100
    outer_iteration = 20
    n_iter = inner_iteration * outer_iteration
    repeat = 20
    results_vanilla_svgd = np.zeros(shape=(repeat, outer_iteration, 2))

    for rep in range(repeat):
        X_train, X_test, y_train, y_test = train_test_split(X_input,
                                                            y_input,
                                                            test_size=0.2)

        theta0 = np.random.normal(0, np.sqrt(alpha), (M, D))
        # EVI
        model = BayesianLR(X_train, y_train, 256, alpha)
        results_vanilla_svgd[rep, :, :] = SVGD().svgd_updates(
            x0=theta0,
            lnprob=model.dlnprob,
            inner_iteration=inner_iteration,
            outer_iteration=outer_iteration,
            stepsize=1,
            X_test=X_test,
            y_test=y_test,
            evaluation=model.evaluation)
        print('one trial ends')

    np.savez('lr_vanilla_svgd',
             results_mean=np.mean(results_vanilla_svgd, axis=0),
             results_var=np.std(results_vanilla_svgd, axis=0))
Пример #6
0
import numpy as np
import numpy.matlib as nm
from svgd import SVGD


class MVN:
    def __init__(self, mu, A):
        self.mu = mu
        self.A = A

    def dlnprob(self, theta):
        return -1 * np.matmul(theta - nm.repmat(self.mu, theta.shape[0], 1),
                              self.A)


if __name__ == '__main__':
    A = np.array([[0.2260, 0.1652], [0.1652, 0.6779]])
    mu = np.array([-0.6871, 0.8010])

    model = MVN(mu, A)

    x0 = np.random.normal(0, 1, [10, 2])
    theta = SVGD().update(x0, model.dlnprob, n_iter=500, stepsize=0.01)
    #theta = SVGD().update(x0, model.dlnprob,n_iter=2000, method = 'subparticles',m=5, cf=False,stepsize=0.01)
    #theta = SVGD().update(x0, model.dlnprob,n_iter=2000, method = 'subparticles',m=5, cf=True,stepsize=0.01)
    #theta = SVGD().update(x0, model.dlnprob, n_iter=2000,method = 'inducedPoints',adver=False,stepsize=0.01)
    #theta = SVGD().update(x0, model.dlnprob,n_iter=500, method = 'inducedPoints',adver=True, m=5, adverMaxIter=5,stepsize=0.01)

    print("ground truth: ", mu)
    print("svgd: ", np.mean(theta, axis=0))
Пример #7
0
if __name__ == '__main__':
    num_iterations = 5000
    num_samples = 100

    weights = [1]
    mus = [np.array([0, 0])]
    sigmas = [np.eye(2)]

    init_particles = sample_gmm(num_samples, [1.], [np.array([-7, -7])],
                                [np.eye(2)])

    true_samples = sample_gmm(num_samples, weights, mus, sigmas)

    plotfunc = get_plotfunc(true_samples)

    gld = gmm_gld(weights, mus, sigmas)

    svgd = SVGD(gld=gld)

    log_lik_func = log_lik_gmm(weights, mus, sigmas)

    report_metrics = metrics(log_lik_func)

    particles = svgd.do_svgd_iterations_optimized(
        init_particles=init_particles,
        num_iterations=num_iterations,
        learning_rate=1e-2,
        plotfunc=plotfunc,
        metrics=report_metrics)
Пример #8
0
           np.array([2])]
    sigmas = [np.eye(1),
              np.eye(1)]

    toy_init_particles = sample_gmm(num_samples,
                                    [1.],
                                    [np.array([-10])],
                                    [np.eye(1)])

    true_samples = sample_gmm(num_samples, weights, mus, sigmas)

    plotfunc = get_plotfunc(true_samples)

    toy_score = gmm_gld(weights, mus, sigmas)

    svgd = SVGD(gld=toy_score)

    particles= svgd.do_svgd_iterations_optimized(init_particles=toy_init_particles,
                                         num_iterations=num_iterations,
                                                  learning_rate=0.1,
                                                  plotfunc=plotfunc)


    x = np.linspace(-15, 10, 1000)
    fig, ax = plt.subplots(1,1)

    sns.kdeplot(true_samples.flatten(), ax=ax, label='Sampler')
    sns.kdeplot(particles.flatten(), ax=ax, label='SVGD')

    ax.legend()
                                  animate,
                                  int(theta_hist.shape[1] / 25),
                                  repeat=False,
                                  blit=True)
    plt.show()


if __name__ == '__main__':
    mu1 = -4
    var1 = 0.5

    mu2 = 2
    var2 = 4

    model = Bimodal(mu1, var1, mu2, var2)

    x0 = np.random.normal(0, 1, [200, 1])
    theta, theta_hist = SVGD().update(x0,
                                      model.dlnprob,
                                      n_iter=3000,
                                      stepsize=0.01,
                                      debug=True)

    # print("ground truth: mu = {} var = {}".format(mu, var))
    mu = np.mean(theta)
    var = np.std(theta)**2
    print("svgd: mu = {} var = {}".format(round(mu, 2), round(var, 2)))

    # plot_results(mu1, var1, mu2, var2, theta)

    animate_results(mu1, var1, mu2, var2, theta_hist, n_bins=30)
Пример #10
0
    D = X_train.shape[1]

    # initialization
    M = 100  # number of particles
    alpha = 1e-2
    inner_iteration = 25
    outer_iteration = 20
    n_iter = inner_iteration * outer_iteration
    repeat = 5
    results_SVGD = np.zeros(shape=(repeat, outer_iteration, 2))

    for rep in range(repeat):
        theta0 = np.random.normal(0, np.sqrt(alpha), (M, D))
        # SVGD

        model = BayesianLR(X_train, y_train, 256, alpha)  # batchsize = 32
        results_SVGD[rep, :, :] = SVGD().update(
            x0=theta0,
            lnprob=model.dlnprob,
            inner_iteration=inner_iteration,
            outer_iteration=outer_iteration,
            stepsize=0.01,
            X_test=X_test,
            y_test=y_test,
            evaluation=model.evaluation,
            debug=True)

    np.savez('lr_svgd',
             results_mean=np.mean(results_SVGD, axis=0),
             results_var=np.std(results_SVGD, axis=0))
    # split the dataset into training and testing
    X_train, X_test, y_train, y_test = train_test_split(X_input,
                                                        y_input,
                                                        test_size=0.2,
                                                        random_state=42)

    a0, b0 = 1, 0.01  #hyper-parameters
    model = BayesianLR(X_train, y_train, 100, a0, b0)  # batchsize = 100

    # initialization
    M = 100  # number of particles
    theta0 = np.zeros([M, D])
    alpha0 = np.random.gamma(a0, b0, M)
    for i in range(M):
        theta0[i, :] = np.hstack([
            np.random.normal(0, np.sqrt(1 / alpha0[i]), d),
            np.log(alpha0[i])
        ])

    theta = SVGD().update(x0=theta0,
                          lnprob=model.dlnprob,
                          bandwidth=-1,
                          n_iter=6000,
                          stepsize=0.05,
                          alpha=0.9,
                          debug=True)

    print '[accuracy, log-likelihood]'
    print model.evaluation(theta, X_test, y_test)
Пример #12
0
        y_test = data[dataName]['t'][0,0][ data[dataName]['test'][0,0][splitIdx-1,:]-1, : ]
        y_train = y_train.ravel(); y_test = y_test.ravel();
        y_train[y_train == -1] = 0; y_test[y_test == -1] = 0;
    ######################

    X_train = np.hstack([X_train, np.ones([X_train.shape[0], 1])])
    X_test = np.hstack([X_test, np.ones([X_test.shape[0], 1])])
    D = X_train.shape[1]

    app = 0
    while True:
        app += 1; filename = 'res_%s_lrSimp_svgd_%s_%d.txt'%(dataName, optType, app)
        try: fid = open(filename, 'r')
        except IOError: break
        fid.close()

    with open(filename, 'w') as fid:
        fid.write('alpha=%.2e; '%alpha + 'M=%d; '%M + 'batchsize=%d; '%batchsize + 'stepsize=%.2e; '%stepsize + 'optAlpha=%.2e; '%optAlpha + 'bandwidth=%s;'%str(bandwidth) + '\n')
        fid.write('iter accuracy log-llh\n')

    # initialization
    theta = np.random.normal(0, np.sqrt(alpha), [M, D])
    model = BayesianLR_simp(X_train, y_train, batchsize=batchsize, alpha=alpha) # batchsize = 100
    svgdobj = SVGD(theta, model.dlnprob, bandwidth, stepsize, optAlpha, optType)
    with open(filename, 'a') as fid:
        for it in range(n_round):
            theta = svgdobj.update(n_iter) #, debug=True)
            res = model.evaluation(theta, X_test, y_test)
            fid.write('%4d %.6f %.6e\n'%((it+1)*n_iter, res[0], res[1]))

Пример #13
0
# hyper-parameters
num_particles = 100  # number of ensembles (SVGD particles)
num_iterations = 2000  # number of training iterations
learning_rate = 0.01
seed = 0

# random seeds
np.random.seed(seed)

model = GaussianMixtureModel()

with Time("Get initial particles"):
    initial_xs = np.array(np.random.normal(-10, 1, (100, 1)), dtype=np.float32)
with Time("training & Get last particles"):
    final_xs = SVGD().update(initial_xs, model.dlnprob, n_iter=num_iterations, stepsize=learning_rate)
initial_xs, final_xs = initial_xs.reshape(-1), final_xs.reshape(-1)


def plot():
    fig = plt.figure(figsize=(5, 5))
    ax = fig.add_subplot(111)
    x_grid = np.linspace(-15, 15, 200)

    initial_density = gaussian_kde(initial_xs)
    ax.plot(x_grid, initial_density(x_grid), color='green', label='0th iteration')
    ax.scatter(initial_xs, np.zeros_like(initial_xs), color='green')

    final_density = gaussian_kde(final_xs)
    ax.plot(x_grid, final_density(x_grid), color='red', label='{}th iteration'.format(num_iterations))
    ax.scatter(final_xs, np.zeros_like(final_xs), color='red')
Пример #14
0
import numpy as np
import numpy.matlib as nm
from svgd import SVGD


class MVN:
    def __init__(self, mu, A):
        self.mu = mu
        self.A = A

    def dlnprob(self, theta):
        return -1 * np.matmul(theta - nm.repmat(self.mu, theta.shape[0], 1),
                              self.A)


if __name__ == '__main__':
    A = np.array([[0.2260, 0.1652], [0.1652, 0.6779]])
    mu = np.array([-0.6871, 0.8010])

    model = MVN(mu, A)

    x0 = np.random.normal(0, 1, [10, 2])
    theta = SVGD().update(x0,
                          model.dlnprob,
                          n_iter=10000,
                          stepsize=0.01,
                          debug=True)

    print("ground truth: ", mu)
    print("svgd: ", np.mean(theta, axis=0))
    def __init__(self, mu, A):
        self.mu = mu
        self.A = A
    
    def dlnprob(self, theta,t):
        x= (time_series[t]-theta)/self.A
	return x
if __name__ == '__main__':
    filtered_means = []
    filtered_covs = []
    A = np.array([1])
    mu = np.array([1])
    model = MVN(mu, A)
    time_series = time_series[:100]     
    x0 = np.random.normal(0,1, [100,1]);
    theta = SVGD().update(x0,0, model.dlnprob, n_iter=1000, stepsize=0.01)
    filtered_means.append(np.mean(theta,axis=0)[0])
    filtered_covs.append(np.var(theta,axis=0)[0])
    for t in range(1,len(time_series)):
    	theta = transition(theta)
    	theta = SVGD().update(theta,t, model.dlnprob, n_iter=1000, stepsize=0.01)
	filtered_means.append(np.mean(theta,axis=0)[0])
        filtered_covs.append(np.var(theta,axis=0)[0])

    print "svgd: ", filtered_means
    print "\n"
    print "svgd var", filtered_covs
    print "\n"
    print "time series", time_series
    plt.plot(range(len(time_series)),time_series,color='blue')
    plt.fill_between(range(len(time_series)), filtered_means + np.sqrt(filtered_covs),filtered_means - np.sqrt(filtered_covs))