def train(): #Pre-process tweets #wordId,tweetId=tp.process(1) #TF-IDF #docwords,docCatIds=svmp.cacheTweetsInList(wordId,tweetId,flow) #SVM Processing #1. Create libSVM file #svmp.createTrainFile(docwords,docCatIds,tweetId) #2. Train the SVM #svmp.trainSVM() svmp.trainliblinear()
def classify(): labels =[] #sampletext = request.form.get('txt1') wordId,tweetId=tp.process(2) #TF-IDF docwords,docCatIds=svmp.cacheTweetsInList(wordId,tweetId,2) #SVM Processing #1. Create libSVM file svmp.createTestFile(docwords,docCatIds,tweetId) #2. Train the SVM #svmp.trainLibLinear() labels = svmp.testSVM(1) #clean_dict(start_pos,end_pos) return labels
def classify(flag=None): #Pre-process tweets wordId,tweetId=tp.process(2) #TF-IDF docwords,docCatIds=svmp.cacheTweetsInList(wordId,tweetId,2) #SVM Processing #1. Create libSVM file svmp.createTestFile(docwords,docCatIds,tweetId) #2. Train the SVM if flag is not None: return svmp.testSVM(1) else: svmp.testSVM()