def task(cls, cost, opts, features, targets):
    suffix = '_'.join(
        opts.targets_data_file.split('/')[-1].split('.')[0].split('_')[-2:])
    out_file = svm_helper.get_low_shot_output_file(opts, cls, cost, suffix)
    if not os.path.exists(out_file):
        clf = LinearSVC(
            C=cost,
            class_weight={
                1: 2,
                -1: 1
            },
            intercept_scaling=1.0,
            verbose=0,
            penalty='l2',
            loss='squared_hinge',
            tol=0.0001,
            dual=True,
            max_iter=2000,
        )
        train_feats, train_cls_labels = svm_helper.get_cls_feats_labels(
            cls, features, targets, opts.dataset)
        clf.fit(train_feats, train_cls_labels)
        # cls_labels = targets[:, cls].astype(dtype=np.int32, copy=True)
        # cls_labels[np.where(cls_labels == 0)] = -1
        # clf.fit(features, cls_labels)
        with open(out_file, 'wb') as fwrite:
            pickle.dump(clf, fwrite)
    return 0
def train_svm_low_shot(opts):
    assert os.path.exists(opts.data_file), "Data file not found. Abort!"
    if not os.path.exists(opts.output_path):
        os.makedirs(opts.output_path)

    features, targets = svm_helper.load_input_data(opts.data_file,
                                                   opts.targets_data_file)
    # normalize the features: N x 9216 (example shape)
    features = svm_helper.normalize_features(features)

    # parse the cost values for training the SVM on
    costs_list = svm_helper.parse_cost_list(opts.costs_list)
    logger.info('Training SVM for costs: {}'.format(costs_list))

    # classes for which SVM testing should be done
    num_classes, cls_list = svm_helper.get_low_shot_svm_classes(
        targets, opts.dataset)

    for cls in cls_list:
        for cost_idx in range(len(costs_list)):
            cost = costs_list[cost_idx]
            suffix = '_'.join(
                opts.targets_data_file.split('/')[-1].split('.')[0].split('_')
                [-2:])
            out_file = svm_helper.get_low_shot_output_file(
                opts, cls, cost, suffix)
            if os.path.exists(out_file):
                logger.info('SVM model exists: {}'.format(out_file))
            else:
                logger.info('SVM model not found: {}'.format(out_file))
                logger.info('Training model with the cost: {}'.format(cost))
                clf = LinearSVC(
                    C=cost,
                    class_weight={
                        1: 2,
                        -1: 1
                    },
                    intercept_scaling=1.0,
                    verbose=1,
                    penalty='l2',
                    loss='squared_hinge',
                    tol=0.0001,
                    dual=True,
                    max_iter=2000,
                )
                train_feats, train_cls_labels = svm_helper.get_cls_feats_labels(
                    cls, features, targets, opts.dataset)
                num_positives = len(np.where(train_cls_labels == 1)[0])
                num_negatives = len(np.where(train_cls_labels == -1)[0])

                logger.info('cls: {} has +ve: {} -ve: {} ratio: {}'.format(
                    cls, num_positives, num_negatives,
                    float(num_positives) / num_negatives))
                logger.info('features: {} cls_labels: {}'.format(
                    train_feats.shape, train_cls_labels.shape))
                clf.fit(train_feats, train_cls_labels)
                logger.info('Saving SVM model to: {}'.format(out_file))
                with open(out_file, 'wb') as fwrite:
                    pickle.dump(clf, fwrite)
    logger.info('All done!')
Пример #3
0
def task(cls, cost, opts, features, targets):
    suffix = '_'.join(
        opts.targets_data_file.split('/')[-1].split('.')[0].split('_')[-2:])
    out_file = svm_helper.get_low_shot_output_file(opts, cls, cost, suffix)
    if os.path.exists(out_file):
        logger.info('SVM model exists: {}'.format(out_file))
    else:
        #logger.info('SVM model not found: {}'.format(out_file))
        #logger.info('Training model with the cost: {}'.format(cost))
        clf = LinearSVC(
            C=cost,
            class_weight={
                1: 2,
                -1: 1
            },
            intercept_scaling=1.0,
            verbose=1,
            penalty='l2',
            loss='squared_hinge',
            tol=0.0001,
            dual=True,
            max_iter=2000,
        )
        train_feats, train_cls_labels = svm_helper.get_cls_feats_labels(
            cls, features, targets, opts.dataset)
        #num_positives = len(np.where(train_cls_labels == 1)[0])
        #num_negatives = len(np.where(train_cls_labels == -1)[0])
        #logger.info('cls: {} has +ve: {} -ve: {} ratio: {}'.format(
        #cls, num_positives, num_negatives,
        #float(num_positives) / num_negatives)
        #)
        #logger.info('features: {} cls_labels: {}'.format(
        #train_feats.shape, train_cls_labels.shape))
        clf.fit(train_feats, train_cls_labels)
        #logger.info('Saving SVM model to: {}'.format(out_file))
        with open(out_file, 'wb') as fwrite:
            pickle.dump(clf, fwrite)
    return 0
Пример #4
0
def test_svm_low_shot(opts):
    k_values = [int(val) for val in opts.k_values.split(",")]
    sample_inds = [int(val) for val in opts.sample_inds.split(",")]
    logger.info('Testing svm for k-values: {} and sample_inds: {}'.format(
        k_values, sample_inds))

    img_ids, cls_names = [], []
    if opts.generate_json:
        img_ids, cls_names = load_json(opts.json_targets)

    assert os.path.exists(opts.data_file), "Data file not found. Abort!"
    # we test the svms on the full test set. Given the test features and the
    # targets, we test it for various k-values (low-shot), cost values and
    # 5 independent samples.
    features, targets = svm_helper.load_input_data(opts.data_file,
                                                   opts.targets_data_file)
    # normalize the features: N x 9216 (example shape)
    features = svm_helper.normalize_features(features)

    # parse the cost values for training the SVM on
    costs_list = svm_helper.parse_cost_list(opts.costs_list)
    logger.info('Testing SVM for costs: {}'.format(costs_list))

    # classes for which SVM testing should be done
    num_classes, cls_list = svm_helper.get_low_shot_svm_classes(
        targets, opts.dataset)

    # create the output for per sample, per k-value and per cost.
    sample_ap_matrices = []
    for _ in range(len(sample_inds)):
        ap_matrix = np.zeros((len(k_values), len(costs_list)))
        sample_ap_matrices.append(ap_matrix)

    # the test goes like this: For a given sample, for a given k-value and a
    # given cost value, we evaluate the trained svm model for all classes.
    # After computing over all classes, we get the mean AP value over all
    # classes. We hence end up with: output = [sample][k_value][cost]
    for inds in range(len(sample_inds)):
        sample_idx = sample_inds[inds]
        for k_idx in range(len(k_values)):
            k_low = k_values[k_idx]
            suffix = 'sample{}_k{}'.format(sample_idx + 1, k_low)
            for cost_idx in range(len(costs_list)):
                cost = costs_list[cost_idx]
                local_cost_ap = np.zeros((num_classes, 1))
                for cls in cls_list:
                    logger.info(
                        'Test sample/k_value/cost/cls: {}/{}/{}/{}'.format(
                            sample_idx + 1, k_low, cost, cls))
                    model_file = svm_helper.get_low_shot_output_file(
                        opts, cls, cost, suffix)
                    with open(model_file, 'rb') as fopen:
                        if six.PY2:
                            model = pickle.load(fopen)
                        else:
                            model = pickle.load(fopen, encoding='latin1')
                    prediction = model.decision_function(features)
                    eval_preds, eval_cls_labels = svm_helper.get_cls_feats_labels(
                        cls, prediction, targets, opts.dataset)
                    P, R, score, ap = svm_helper.get_precision_recall(
                        eval_cls_labels, eval_preds)
                    local_cost_ap[cls][0] = ap
                mean_cost_ap = np.mean(local_cost_ap, axis=0)
                sample_ap_matrices[inds][k_idx][cost_idx] = mean_cost_ap
            out_k_sample_file = os.path.join(
                opts.output_path,
                'test_ap_sample{}_k{}.npy'.format(sample_idx + 1, k_low))
            save_data = sample_ap_matrices[inds][k_idx]
            save_data = save_data.reshape((1, -1))
            np.save(out_k_sample_file, save_data)
            logger.info('Saved sample test k_idx AP to file: {} {}'.format(
                out_k_sample_file, save_data.shape))
            if opts.generate_json:
                argmax_cls = np.argmax(save_data, axis=1)
                chosen_cost = costs_list[argmax_cls[0]]
                logger.info('chosen cost: {}'.format(chosen_cost))
                save_json_predictions(opts, chosen_cost, sample_idx, k_low,
                                      features, cls_list, cls_names, img_ids)
    logger.info('All done!!')