def main(args): print(f'Load model from {args.snapshot}') model = tf.keras.models.load_model(args.snapshot) print(f'Processing {args.slide}') dst_base = os.path.basename(args.slide).replace('svs', 'npy') if not os.path.isdir(args.dest): os.makedirs(args.dest) dst = os.path.join(args.dest, dst_base) print(f'Destination {dst}') ramdisk_file = cp_ramdisk(args.slide) slide = Slide(ramdisk_file, args) try: slide.initialize_output('prob', 4, mode='tile', compute_fn=compute_fn) ret = slide.compute('prob', args, model=model) np.save(dst, ret) except Exception as e: print('Caught error processing') traceback.print_tb(e.__traceback__) print(e) finally: os.remove(ramdisk_file)
def main(args): with open(args.lst, 'r') as f: srclist = [x.strip() for x in f] for src in srclist: dst = repext(src, args.suffix) if os.path.exists(dst): print('Exists', src, '-->', dst) continue # Loading data from ramdisk incurs a one-time copy cost rdsrc = cpramdisk(src, args.ramdisk) print('File:', rdsrc) try: slide = Slide(src, args) slide.initialize_output('wsi', 3, mode='full', compute_fn=compute_fn) ret = slide.compute('wsi', args) print('Saving {} --> {}'.format(ret.shape, dst)) cv2.imwrite(dst, ret) except Exception as e: traceback.print_tb(e.__traceback__) finally: print('Removing {}'.format(rdsrc)) os.remove(rdsrc)
def main(args, sess): with open(args.slides, 'r') as f: srclist = [x.strip() for x in f] # image_op = tf.placeholder(tf.float32, (args.batchsize, args.process_size, # args.process_size, 3)) # module = hub.Module(args.snapshot) # predict_op = module(image_op) image_op, predict_op = get_input_output_ops(sess, args.snapshot) for src in srclist: dst = os.path.splitext(src)[0] + '.{}'.format(args.ext) dst_base = os.path.basename(dst) dst = os.path.join(args.dest, dst_base) print(dst) slide = Slide(src, args) slide.initialize_output('prob', 4, mode='tile', compute_fn=compute_fn) ret = slide.compute('prob', args, predict_op=predict_op, image_op=image_op) np.save(dst, ret)
def main(args): # Define a compute_fn that should do three things: # 1. define an iterator over the slide's tiles # 2. compute an output with given model parameter # 3. if args.iter_type == 'python': def compute_fn(slide, args, model=None): print('Slide with {}'.format(len(slide.tile_list))) it_factory = PythonIterator(slide, args) for k, (img, idx) in enumerate(it_factory.yield_batch()): prob = model(img) if k % 50 == 0: print('Batch #{:04d} idx:{} img:{} prob:{}'.format( k, idx.shape, img.shape, prob.shape)) slide.place_batch(prob, idx, 'prob', mode='tile') ret = slide.output_imgs['prob'] return ret # Tensorflow multithreaded queue-based iterator (in eager mode) elif args.iter_type == 'tf': def compute_fn(slide, args, model=None): assert tf.executing_eagerly() print('Slide with {}'.format(len(slide.tile_list))) # In eager mode, we return a tf.contrib.eager.Iterator eager_iterator = TensorflowIterator(slide, args).make_iterator() # The iterator can be used directly. Ququeing and multithreading # are handled in the backend by the tf.data.Dataset ops features, indices = [], [] for k, (img, idx) in enumerate(eager_iterator): # img = tf.expand_dims(img, axis=0) features.append( model.encode_bag(img, training=False, return_z=True)) indices.append(idx.numpy()) img, idx = img.numpy(), idx.numpy() if k % 50 == 0: print('Batch #{:04d}\t{}'.format(k, img.shape)) features = tf.concat(features, axis=0) z_att, att = model.mil_attention(features, training=False, return_raw_att=True) att = np.squeeze(att) indices = np.concatenate(indices) slide.place_batch(att, indices, 'att', mode='tile') ret = slide.output_imgs['att'] return ret # Set up the model first encoder_args = get_encoder_args(args.encoder) model = MilkEager(encoder_args=encoder_args, mil_type=args.mil, deep_classifier=args.deep_classifier, batch_size=args.batchsize, temperature=args.temperature, heads=args.heads) x = tf.zeros((1, 1, args.process_size, args.process_size, 3)) _ = model(x, verbose=True, head='all', training=True) model.load_weights(args.snapshot, by_name=True) # keras Model subclass model.summary() # Read list of inputs with open(args.slides, 'r') as f: slides = [x.strip() for x in f] # Loop over slides for src in slides: # Dirty substitution of the file extension give us the # destination. Do this first so we can just skip the slide # if this destination already exists. # Set the --suffix option to reflect the model / type of processed output dst = repext(src, args.suffix) # Loading data from ramdisk incurs a one-time copy cost rdsrc = cpramdisk(src, args.ramdisk) print('File:', rdsrc) # Wrapped inside of a try-except-finally. # We want to make sure the slide gets cleaned from # memory in case there's an error or stop signal in the # middle of processing. try: # Initialze the side from our temporary path, with # the arguments passed in from command-line. # This returns an svsutils.Slide object slide = Slide(rdsrc, args) # This step will eventually be included in slide creation # with some default compute_fn's provided by svsutils # For now, do it case-by-case, and use the compute_fn # that we defined just above. slide.initialize_output('att', args.n_classes, mode='tile', compute_fn=compute_fn) # Call the compute function to compute this output. # Again, this may change to something like... # slide.compute_all # which would loop over all the defined output types. ret = slide.compute('att', args, model=model) print('{} --> {}'.format(ret.shape, dst)) np.save(dst, ret[:, :, ::-1]) except Exception as e: print(e) traceback.print_tb(e.__traceback__) finally: print('Removing {}'.format(rdsrc)) os.remove(rdsrc)
def main(args): # Define a compute_fn that should do three things: # 1. define an iterator over the slide's tiles # 2. compute an output with a given model / arguments # 3. return a reconstructed slide def compute_fn(slide, args, model=None, n_dropout=10 ): assert tf.executing_eagerly() print('Slide with {}'.format(len(slide.tile_list))) # In eager mode, we return a tf.contrib.eager.Iterator eager_iterator = TensorflowIterator(slide, args).make_iterator() # The iterator can be used directly. Ququeing and multithreading # are handled in the backend by the tf.data.Dataset ops features, indices = [], [] for k, (img, idx) in enumerate(eager_iterator): # img = tf.expand_dims(img, axis=0) features.append( model.encode_bag(img, training=False, return_z=True) ) indices.append(idx.numpy()) img, idx = img.numpy(), idx.numpy() if k % 50 == 0: print('Batch #{:04d}\t{}'.format(k, img.shape)) features = tf.concat(features, axis=0) ## Sample-dropout # features = features.numpy() # print(features.shape) # n_instances = features.shape[0] # att = np.zeros(n_instances) # n_choice = int(n_instances * 0.7) # all_heads = list(range(args.heads)) # for j in range(n_dropout): # idx = np.random.choice(range(n_instances), n_choice, replace=False) # print(idx) # fdrop = features[idx, :] z_att, att = model.mil_attention(features, training=False, return_raw_att=True) # att[idx] += np.squeeze(attdrop) yhat_multihead = model.apply_classifier(z_att, heads=all_heads, training=False) print('yhat mean {}'.format(np.mean(yhat_multihead, axis=0))) indices = np.concatenate(indices) att = np.squeeze(att) slide.place_batch(att, indices, 'att', mode='tile') ret = slide.output_imgs['att'] print('Got attention image: {}'.format(ret.shape)) return ret, features.numpy() ## Begin main script: # Set up the model first encoder_args = get_encoder_args(args.encoder) model = MilkEager(encoder_args=encoder_args, mil_type=args.mil, deep_classifier=args.deep_classifier, batch_size=args.batchsize, temperature=args.temperature, heads = args.heads) x = tf.zeros((1, 1, args.process_size, args.process_size, 3)) all_heads = [0,1,2,3,4,5,6,7,8,9] _ = model(x, verbose=True, heads=all_heads, training=True) model.load_weights(args.snapshot, by_name=True) # keras Model subclass model.summary() # Read list of inputs with open(args.slides, 'r') as f: slides = [x.strip() for x in f] # Loop over slides for src in slides: # Dirty substitution of the file extension give us the # destination. Do this first so we can just skip the slide # if this destination already exists. # Set the --suffix option to reflect the model / type of processed output dst = repext(src, args.suffix) featdst = repext(src, args.suffix+'.feat.npy') # Loading data from ramdisk incurs a one-time copy cost rdsrc = cpramdisk(src, args.ramdisk) print('\n\nFile:', rdsrc) # Wrapped inside of a try-except-finally. # We want to make sure the slide gets cleaned from # memory in case there's an error or stop signal in the # middle of processing. try: # Initialze the side from our temporary path, with # the arguments passed in from command-line. # This returns an svsutils.Slide object slide = Slide(rdsrc, args) # This step will eventually be included in slide creation # with some default compute_fn's provided by svsutils # For now, do it case-by-case, and use the compute_fn # that we defined just above. slide.initialize_output('att', args.n_classes, mode='tile', compute_fn=compute_fn) # Call the compute function to compute this output. # Again, this may change to something like... # slide.compute_all # which would loop over all the defined output types. ret, features = slide.compute('att', args, model=model) print('{} --> {}'.format(ret.shape, dst)) print('{} --> {}'.format(features.shape, featdst)) np.save(dst, ret) np.save(featdst, features) except Exception as e: print(e) traceback.print_tb(e.__traceback__) finally: print('Removing {}'.format(rdsrc)) os.remove(rdsrc)
def main(args, sess): # Define a compute_fn that should do three things: # 1. define an iterator over the slide's tiles # 2. compute an output with given model parameter # 3. asseble / gather the output # # compute_fn - function can define part of a computation # graph in eager mode -- possibly in graph mode. # We should completely reset the graph each call then # I still don't know how nodes are actually represented in memory # or if keeping them around has a real cost. def compute_fn(slide, args, sess=None): # assert tf.executing_eagerly() print('\n\nSlide with {}'.format(len(slide.tile_list))) # I'm not sure if spinning up new ops every time is bad. # In this example the iterator is separate from the # infernce function, it can also be set up with the two # connected to skip the feed_dict tf_iterator = TensorflowIterator(slide, args).make_iterator() img_op, idx_op = tf_iterator.get_next() # prob_op = model(img_op) # sess.run(tf.global_variables_initializer()) # The iterator can be used directly. Ququeing and multithreading # are handled in the backend by the tf.data.Dataset ops # for k, (img, idx) in enumerate(eager_iterator): k, nk = 0, 0 while True: try: img, idx = sess.run([ img_op, idx_op, ]) prob = model.inference(img) nk += img.shape[0] slide.place_batch(prob, idx, 'prob', mode='full', clobber=True) k += 1 if k % 50 == 0: prstr = 'Batch #{:04d} idx:{} img:{} ({:2.2f}-{:2.2f}) prob:{} T {} \ '.format(k, idx.shape, img.shape, img.min(), img.max(), prob.shape, nk) print(prstr) if args.verbose: print('More info: ') print('img: ', img.dtype, img.min(), img.max(), img.mean()) pmax = np.argmax(prob, axis=-1).ravel() for u in range(args.n_classes): count_u = (pmax == u).sum() print('- class {:02d} : {}'.format(u, count_u)) except tf.errors.OutOfRangeError: print('Finished.') print('Total: {}'.format(nk)) break except Exception as e: print(e) traceback.print_tb(e.__traceback__) break # We've exited the loop. Clean up the iterator del tf_iterator, idx_op, img_op # slide.make_outputs() slide.make_outputs() ret = slide.output_imgs['prob'] return ret # Set up the model first model = gg.get_model(args.model, sess, args.process_size, args.n_classes) # NOTE big time wasted because you have to initialize, # THEN run the restore op to replace the already-created weights sess.run(tf.global_variables_initializer()) model.restore(args.snapshot) # Read list of inputs with open(args.slides, 'r') as f: slides = [x.strip() for x in f] # Loop over slides; Record times nslides = len(slides) successes, ntiles, total_time, fpss = [], [], [], [] for i, src in enumerate(slides): # Dirty substitution of the file extension give us the # destination. Do this first so we can just skip the slide # if this destination already exists. # Set the --suffix option to reflect the model / type of processed output dst = repext(src, args.suffix) if os.path.exists(dst): print('{} Exists.'.format(dst)) continue # Loading data from ramdisk incurs a one-time copy cost rdsrc = cpramdisk(src, args.ramdisk) # Wrapped inside of a try-except-finally. # We want to make sure the slide gets cleaned from # memory in case there's an error or stop signal in the # middle of processing. try: # Initialze the side from our temporary path, with # the arguments passed in from command-line. # This returns an svsutils.Slide object print('\n\n-------------------------------') print('File:', rdsrc, '{:04d} / {:04d}'.format(i, nslides)) t0 = time.time() slide = Slide(rdsrc, args) # This step will eventually be included in slide creation # with some default compute_fn's provided by svsutils # For now, do it case-by-case, and use the compute_fn # that we defined just above. # TODO pull the expected output size from the model.. ? # support common model types - keras, tfmodels, tfhub.. slide.initialize_output('prob', args.n_classes, mode='full', compute_fn=compute_fn) # Call the compute function to compute this output. # Again, this may change to something like... # slide.compute_all # which would loop over all the defined output types. ret = slide.compute('prob', args, sess=sess) print('{} --> {}'.format(ret.shape, dst)) ret = (ret * 255).astype(np.uint8) np.save(dst, ret) # If it finishes, record some stats tend = time.time() deltat = tend - t0 fps = len(slide.tile_list) / float(deltat) successes.append(rdsrc) ntiles.append(len(slide.tile_list)) total_time.append(deltat) fpss.append(fps) except Exception as e: print(e) traceback.print_tb(e.__traceback__) finally: print('Removing {}'.format(rdsrc)) os.remove(rdsrc) try: print('Cleaning slide object') slide.close() del slide except: print('No slide object not found to clean up ?') write_times(args.timefile, successes, ntiles, total_time, fpss)
def main(args, sess): # Define a compute_fn that should do three things: # 1. define an iterator over the slide's tiles # 2. compute an output with given model parameter # 3. # def compute_fn(slide, args, model=None): # print('Slide with {}'.format(len(slide.tile_list))) # it_factory = PythonIterator(slide, args) # for k, (img, idx) in enumerate(it_factory.yield_batch()): # prob = model.predict_on_batch(img) # if k % 50 == 0: # print('Batch #{:04d} idx:{} img:{} prob:{} \ # '.format(k, idx.shape, img.shape, prob.shape)) # slide.place_batch(prob, idx, 'prob', mode='tile') # ret = slide.output_imgs['prob'] # return ret # Tensorflow multithreaded queue-based iterator (in eager mode) # elif args.iter_type == 'tf': def compute_fn(slide, args, sess=None, img_pl=None, prob_op=None): # assert tf.executing_eagerly() print('\n\nSlide with {}'.format(len(slide.tile_list))) # I'm not sure if spinning up new ops every time is bad. tf_iterator = TensorflowIterator(slide, args).make_iterator() img_op, idx_op = tf_iterator.get_next() # prob_op = model(img_op) # sess.run(tf.global_variables_initializer()) # The iterator can be used directly. Ququeing and multithreading # are handled in the backend by the tf.data.Dataset ops # for k, (img, idx) in enumerate(eager_iterator): k, nk = 0, 0 while True: try: img, idx = sess.run([ img_op, idx_op, ]) prob = sess.run(prob_op, {img_pl: img}) nk += img.shape[0] if k % 50 == 0: print('Batch #{:04d} idx:{} img:{} ({}) prob:{} T {} \ '.format(k, idx.shape, img.max(), img.shape, prob.shape, nk)) slide.place_batch(prob, idx, 'prob', mode='tile') k += 1 except tf.errors.OutOfRangeError: print('Finished.') print('Total: {}'.format(nk)) break finally: ret = slide.output_imgs['prob'] return ret # Set up the model first # Set up a placeholder for the input img_pl = tf.placeholder(tf.float32, (None, args.process_size, args.process_size, 3)) model = load_model(args.snapshot) prob_op = model(img_pl) sess.run(tf.global_variables_initializer()) # Read list of inputs with open(args.slides, 'r') as f: slides = [x.strip() for x in f] # Loop over slides for src in slides: # Dirty substitution of the file extension give us the # destination. Do this first so we can just skip the slide # if this destination already exists. # Set the --suffix option to reflect the model / type of processed output dst = repext(src, args.suffix) # Loading data from ramdisk incurs a one-time copy cost rdsrc = cpramdisk(src, args.ramdisk) print('File:', rdsrc) # Wrapped inside of a try-except-finally. # We want to make sure the slide gets cleaned from # memory in case there's an error or stop signal in the # middle of processing. try: # Initialze the side from our temporary path, with # the arguments passed in from command-line. # This returns an svsutils.Slide object print('\n\n-------------------------------') slide = Slide(rdsrc, args) # This step will eventually be included in slide creation # with some default compute_fn's provided by svsutils # For now, do it case-by-case, and use the compute_fn # that we defined just above. slide.initialize_output('prob', 4, mode='tile', compute_fn=compute_fn) # Call the compute function to compute this output. # Again, this may change to something like... # slide.compute_all # which would loop over all the defined output types. ret = slide.compute('prob', args, sess=sess, img_pl=img_pl, prob_op=prob_op) print('{} --> {}'.format(ret.shape, dst)) np.save(dst, ret) except Exception as e: print(e) traceback.print_tb(e.__traceback__) finally: print('Removing {}'.format(rdsrc)) os.remove(rdsrc)