def get_reservable_nodes(ad): """get_reservable_nodes """ rspecfile = tempfile.NamedTemporaryFile(delete=False) rspecfile.write(ad.text.encode()) rspecfile.close() tree = ET.parse(rspecfile.name) os.unlink(rspecfile.name) root = tree.getroot() # find the element has reservable_types e = root.find( ".//{http://www.protogeni.net/resources/rspec/ext/emulab/1}reservable_types" ) reservable_type = e[0].attrib['name'] reservable_nodes = [] for node in ad.nodes: if reservable_type in node.hardware_types: reservable_node = Node(component_name=node.name, component_id=node.component_id, type=reservable_type, available=node.available) # print(dir(node)) reservable_nodes.append(reservable_node) return reservable_nodes
def _convert_kg2_node_to_swagger_node(self, neo4j_node): swagger_node = Node() swagger_node.id = neo4j_node.get('id') swagger_node.name = neo4j_node.get('name') swagger_node.description = neo4j_node.get('description') swagger_node.uri = neo4j_node.get('iri') swagger_node.node_attributes = [] node_category = neo4j_node.get('category_label') swagger_node.type = eu.convert_string_or_list_to_list(node_category) # Fill out the 'symbol' property (only really relevant for nodes from UniProtKB) if swagger_node.symbol is None and swagger_node.id.lower().startswith( "uniprot"): swagger_node.symbol = neo4j_node.get('name') swagger_node.name = neo4j_node.get('full_name') # Add all additional properties on KG2 nodes as swagger NodeAttribute objects additional_kg2_node_properties = [ 'publications', 'synonym', 'category', 'provided_by', 'deprecated', 'update_date' ] node_attributes = self._create_swagger_attributes( "node", additional_kg2_node_properties, neo4j_node) swagger_node.node_attributes += node_attributes return swagger_node
def queryTerm(self, term): method = "queryTerm" attributes = self.findTermAttributesAndTypeByName(term) response = self.createResponse() if ( attributes["status"] == 'OK' ): node1 = Node() node1.id = "MESH:" + attributes["id"] node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"] node1.type = attributes["type"] node1.name = attributes["name"] node1.description = attributes["description"] #### Create the first result (potential answer) result1 = Result() result1.id = "http://rtx.ncats.io/api/v1/result/0000" result1.text = "The term " + attributes["name"] + " refers to " + attributes["description"] result1.confidence = 1.0 #### Create a ResultGraph object and put the list of nodes and edges into it result_graph = ResultGraph() result_graph.node_list = [ node1 ] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the response result_list = [ result1 ] response.result_list = result_list else: response.response_code = "TermNotFound" response.message = "Unable to find term '" + term + "' in MeSH. No further information is available at this time." response.id = None return response
def _convert_kg1_node_to_swagger_node(neo4j_node: Dict[str, any]) -> Node: swagger_node = Node() swagger_node.id = neo4j_node.get('id') swagger_node.name = neo4j_node.get('name') swagger_node.symbol = neo4j_node.get('symbol') swagger_node.description = neo4j_node.get('description') swagger_node.uri = neo4j_node.get('uri') swagger_node.node_attributes = [] node_category = neo4j_node.get('category') swagger_node.type = eu.convert_string_or_list_to_list(node_category) return swagger_node
def _add_answers_to_kg(self, answer_kg, reasoner_std_response, input_qnode_id, output_qnode_id, qedge_id): kg_to_qg_ids_dict = self._build_kg_to_qg_id_dict(reasoner_std_response['results']) if reasoner_std_response['knowledge_graph']['edges']: remapped_node_ids = dict() self.response.debug(f"Got results back from BTE for this query " f"({len(reasoner_std_response['knowledge_graph']['edges'])} edges)") for node in reasoner_std_response['knowledge_graph']['nodes']: swagger_node = Node() bte_node_id = node.get('id') swagger_node.name = node.get('name') swagger_node.type = eu.convert_string_to_snake_case(node.get('type')) # Map the returned BTE qg_ids back to the original qnode_ids in our query graph bte_qg_id = kg_to_qg_ids_dict['nodes'].get(bte_node_id) if bte_qg_id == "n0": qnode_id = input_qnode_id elif bte_qg_id == "n1": qnode_id = output_qnode_id else: self.response.error("Could not map BTE qg_id to ARAX qnode_id", error_code="UnknownQGID") return answer_kg # Find and use the preferred equivalent identifier for this node (if it's an 'output' node) if qnode_id == output_qnode_id: if bte_node_id in remapped_node_ids: swagger_node.id = remapped_node_ids.get(bte_node_id) else: equivalent_curies = [f"{prefix}:{eu.get_curie_local_id(local_id)}" for prefix, local_ids in node.get('equivalent_identifiers').items() for local_id in local_ids] swagger_node.id = eu.get_best_equivalent_curie(equivalent_curies, swagger_node.type) remapped_node_ids[bte_node_id] = swagger_node.id else: swagger_node.id = bte_node_id eu.add_node_to_kg(answer_kg, swagger_node, qnode_id) for edge in reasoner_std_response['knowledge_graph']['edges']: swagger_edge = Edge() swagger_edge.id = edge.get("id") swagger_edge.type = edge.get('type') swagger_edge.source_id = remapped_node_ids.get(edge.get('source_id'), edge.get('source_id')) swagger_edge.target_id = remapped_node_ids.get(edge.get('target_id'), edge.get('target_id')) swagger_edge.is_defined_by = "BTE" swagger_edge.provided_by = edge.get('edge_source') # Map the returned BTE qg_id back to the original qedge_id in our query graph bte_qg_id = kg_to_qg_ids_dict['edges'].get(swagger_edge.id) if bte_qg_id != "e1": self.response.error("Could not map BTE qg_id to ARAX qedge_id", error_code="UnknownQGID") return answer_kg eu.add_edge_to_kg(answer_kg, swagger_edge, qedge_id) return answer_kg
def add_subgraph(self, nodes, edges, plain_text, confidence, return_result=False): """ Populate the object model using networkx neo4j subgraph :param nodes: nodes in the subgraph (g.nodes(data=True)) :param edges: edges in the subgraph (g.edges(data=True)) :return: none """ # Get the relevant info from the nodes and edges node_keys = [] node_descriptions = dict() node_names = dict() node_labels = dict() node_uuids = dict() node_accessions = dict() node_iris = dict() node_uuids2iri = dict() node_curies = dict() node_uuids2curie = dict() for u, data in nodes: node_keys.append(u) if 'description' in data['properties']: node_descriptions[u] = data['properties']['description'] else: node_descriptions[u] = "None" node_names[u] = data['properties']['name'] node_labels[u] = list(set(data['labels']).difference({'Base'}))[0] node_uuids[u] = data['properties']['UUID'] node_accessions[u] = data['properties']['accession'] node_iris[u] = data['properties']['uri'] node_uuids2iri[data['properties'] ['UUID']] = data['properties']['uri'] curie_id = data['properties']['id'] if curie_id.split(':')[0].upper() == "CHEMBL": curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1] node_uuids2curie[data['properties']['UUID']] = curie_id node_curies[ u] = curie_id # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address) edge_keys = [] edge_types = dict() edge_source_db = dict() edge_source_iri = dict() edge_target_iri = dict() edge_source_curie = dict() edge_target_curie = dict() for u, v, data in edges: edge_keys.append((u, v)) edge_types[(u, v)] = data['type'] edge_source_db[(u, v)] = data['properties']['provided_by'] edge_source_iri[( u, v)] = node_uuids2iri[data['properties']['source_node_uuid']] edge_target_iri[( u, v)] = node_uuids2iri[data['properties']['target_node_uuid']] edge_source_curie[( u, v)] = node_uuids2curie[data['properties']['source_node_uuid']] edge_target_curie[( u, v)] = node_uuids2curie[data['properties']['target_node_uuid']] # For each node, populate the relevant information node_objects = [] node_iris_to_node_object = dict() for node_key in node_keys: node = Node() node.id = node_curies[node_key] node.type = node_labels[node_key] node.name = node_names[node_key] node.uri = node_iris[node_key] node.accession = node_accessions[node_key] node.description = node_descriptions[node_key] node_objects.append(node) node_iris_to_node_object[node_iris[node_key]] = node # for each edge, create an edge between them edge_objects = [] for u, v in edge_keys: edge = Edge() edge.type = edge_types[(u, v)] edge.source_id = node_iris_to_node_object[edge_source_iri[(u, v)]].id edge.target_id = node_iris_to_node_object[edge_target_iri[(u, v)]].id #edge.origin_list = [] #edge.origin_list.append(edge_source_db[(u, v)]) # TODO: check with eric if this really should be a list and if it should contain the source DB('s) edge_objects.append(edge) #edge.attribute_list #edge.confidence #edge.evidence_type edge.is_defined_by = "RTX" #edge.provided_by = node_iris_to_node_object[edge_source_iri[(u, v)]].uri edge.provided_by = edge_source_db[(u, v)] #edge.publications #edge.qualifiers #edge.relation #edge.source_id #edge.target_id #edge.type # Create the result (potential answer) result1 = Result() result1.text = plain_text result1.confidence = confidence # Create a ResultGraph object and put the list of nodes and edges into it result_graph = ResultGraph() result_graph.node_list = node_objects result_graph.edge_list = edge_objects # Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph # Put the first result (potential answer) into the response self._result_list.append(result1) self.response.result_list = self._result_list # Increment the number of results self._num_results += 1 if self._num_results == 1: self.response.message = "%s result found" % self._num_results else: self.response.message = "%s results found" % self._num_results if return_result: return result1 else: pass
def add_neighborhood_graph(self, nodes, edges, confidence=None): """ Populate the object model using networkx neo4j subgraph :param nodes: nodes in the subgraph (g.nodes(data=True)) :param edges: edges in the subgraph (g.edges(data=True)) :return: none """ # Get the relevant info from the nodes and edges node_keys = [] node_descriptions = dict() node_names = dict() node_labels = dict() node_uuids = dict() node_accessions = dict() node_iris = dict() node_uuids2iri = dict() node_curies = dict() node_uuids2curie = dict() for u, data in nodes: node_keys.append(u) if 'description' in data['properties']: node_descriptions[u] = data['properties']['description'] else: node_descriptions[u] = "None" node_names[u] = data['properties']['name'] node_labels[u] = list(set(data['labels']).difference({'Base'}))[0] node_uuids[u] = data['properties']['UUID'] node_accessions[u] = data['properties']['accession'] node_iris[u] = data['properties']['uri'] node_uuids2iri[data['properties'] ['UUID']] = data['properties']['uri'] curie_id = data['properties']['id'] if curie_id.split(':')[0].upper() == "CHEMBL": curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1] node_uuids2curie[data['properties']['UUID']] = curie_id node_curies[ u] = curie_id # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address) edge_keys = [] edge_types = dict() edge_source_db = dict() edge_source_iri = dict() edge_target_iri = dict() edge_source_curie = dict() edge_target_curie = dict() for u, v, data in edges: edge_keys.append((u, v)) edge_types[(u, v)] = data['type'] edge_source_db[(u, v)] = data['properties']['provided_by'] edge_source_iri[( u, v)] = node_uuids2iri[data['properties']['source_node_uuid']] edge_target_iri[( u, v)] = node_uuids2iri[data['properties']['target_node_uuid']] edge_source_curie[( u, v)] = node_uuids2curie[data['properties']['source_node_uuid']] edge_target_curie[( u, v)] = node_uuids2curie[data['properties']['target_node_uuid']] # For each node, populate the relevant information node_objects = [] node_iris_to_node_object = dict() for node_key in node_keys: node = Node() node.id = node_curies[node_key] node.type = node_labels[node_key] node.name = node_names[node_key] node.uri = node_iris[node_key] node.accession = node_accessions[node_key] node.description = node_descriptions[node_key] node_objects.append(node) node_iris_to_node_object[node_iris[node_key]] = node # for each edge, create an edge between them edge_objects = [] for u, v in edge_keys: edge = Edge() edge.type = edge_types[(u, v)] edge.source_id = node_iris_to_node_object[edge_source_iri[(u, v)]].id edge.target_id = node_iris_to_node_object[edge_target_iri[(u, v)]].id #edge.origin_list = [] #edge.origin_list.append(edge_source_db[(u, v)]) # TODO: check with eric if this really should be a list and if it should contain the source DB('s) edge.provided_by = edge_source_db[(u, v)] edge.is_defined_by = "RTX" edge_objects.append(edge) # Create the result (potential answer) result1 = Result() text = "This is a subgraph extracted from the full RTX knowledge graph, including nodes and edges relevant to the query." \ " This is not an answer to the query per se, but rather an opportunity to examine a small region of the RTX knowledge graph for further study. " \ "Formal answers to the query are below." result1.text = text result1.confidence = confidence result1.result_type = "neighborhood graph" # Create a ResultGraph object and put the list of nodes and edges into it result_graph = ResultGraph() result_graph.node_list = node_objects result_graph.edge_list = edge_objects # Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph # Put the first result (potential answer) into the response self._result_list.append(result1) self.response.result_list = self._result_list
def add_subgraph(self, nodes, edges, description, confidence, return_result=False, suppress_bindings=False): """ Populate the object model using networkx neo4j subgraph :param nodes: nodes in the subgraph (g.nodes(data=True)) :param edges: edges in the subgraph (g.edges(data=True)) :return: none """ # Get the relevant info from the nodes and edges node_keys = [] node_descriptions = dict() node_names = dict() node_labels = dict() node_uuids = dict() node_accessions = dict() node_iris = dict() node_uuids2iri = dict() node_curies = dict() node_uuids2curie = dict() for u, data in nodes: node_keys.append(u) if 'description' in data['properties']: node_descriptions[u] = data['properties']['description'] else: node_descriptions[u] = "None" node_names[u] = data['properties']['name'] node_labels[u] = list(set(data['labels']).difference({'Base'}))[0] node_uuids[u] = data['properties']['UUID'] node_accessions[u] = data['properties']['accession'] node_iris[u] = data['properties']['uri'] node_uuids2iri[data['properties'] ['UUID']] = data['properties']['uri'] curie_id = data['properties']['id'] if curie_id.split(':')[0].upper() == "CHEMBL": curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1] node_uuids2curie[data['properties']['UUID']] = curie_id node_curies[ u] = curie_id # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address) edge_keys = [] edge_types = dict() edge_source_db = dict() edge_source_iri = dict() edge_target_iri = dict() edge_source_curie = dict() edge_target_curie = dict() edge_ids = dict() for u, v, data in edges: edge_keys.append((u, v)) edge_types[(u, v)] = data['type'] edge_source_db[(u, v)] = data['properties']['provided_by'] edge_source_iri[( u, v)] = node_uuids2iri[data['properties']['source_node_uuid']] edge_target_iri[( u, v)] = node_uuids2iri[data['properties']['target_node_uuid']] edge_source_curie[( u, v)] = node_uuids2curie[data['properties']['source_node_uuid']] edge_target_curie[( u, v)] = node_uuids2curie[data['properties']['target_node_uuid']] edge_ids[(u, v)] = data['properties']['provided_by'] # FIXME # For each node, populate the relevant information node_objects = [] node_iris_to_node_object = dict() for node_key in node_keys: node = Node() node.id = node_curies[node_key] node.type = [node_labels[node_key]] node.name = node_names[node_key] node.uri = node_iris[node_key] node.accession = node_accessions[node_key] node.description = node_descriptions[node_key] node_objects.append(node) node_iris_to_node_object[node_iris[node_key]] = node #### Add this node to the master knowledge graph if node.id not in self._node_ids: self.message.knowledge_graph.nodes.append(node) self._node_ids[node.id] = node.type[ 0] # Just take the first of potentially several FIXME #### Create the bindings lists node_bindings = list() edge_bindings = list() # for each edge, create an edge between them edge_objects = [] for u, v in edge_keys: edge = Edge() #edge.id is set below when building the bindings edge.type = edge_types[(u, v)] edge.source_id = node_iris_to_node_object[edge_source_iri[(u, v)]].id edge.target_id = node_iris_to_node_object[edge_target_iri[(u, v)]].id edge_objects.append(edge) #edge.attribute_list #edge.confidence #edge.evidence_type edge.is_defined_by = "RTX" edge.provided_by = edge_source_db[(u, v)] #edge.publications #edge.qualifiers #edge.relation #edge.source_id #edge.target_id #edge.type #### Add this edge to the master knowledge graph edge_str = "%s -%s- %s" % (edge.source_id, edge.type, edge.target_id) if edge_str not in self._edge_ids: self.message.knowledge_graph.edges.append(edge) edge.id = "%d" % self._edge_counter self._edge_ids[edge_str] = edge.id self._edge_counter += 1 else: edge.id = self._edge_ids[edge_str] #### Try to figure out how the source fits into the query_graph for the bindings source_type = self._node_ids[edge.source_id] if edge.source_id in self._type_map: source_knowledge_map_key = self._type_map[edge.source_id] else: source_knowledge_map_key = self._type_map[source_type] if not source_knowledge_map_key: eprint( "Expected to find '%s' in the response._type_map, but did not" % source_type) raise Exception( "Expected to find '%s' in the response._type_map, but did not" % source_type) node_bindings.append( NodeBinding(qg_id=source_knowledge_map_key, kg_id=edge.source_id)) # if source_knowledge_map_key not in node_bindings: # node_bindings[source_knowledge_map_key] = list() # node_bindings_dict[source_knowledge_map_key] = dict() # if edge.source_id not in node_bindings_dict[source_knowledge_map_key]: # node_bindings[source_knowledge_map_key].append(edge.source_id) # node_bindings_dict[source_knowledge_map_key][edge.source_id] = 1 #### Try to figure out how the target fits into the query_graph for the knowledge map target_type = self._node_ids[edge.target_id] if edge.target_id in self._type_map: target_knowledge_map_key = self._type_map[edge.target_id] else: target_knowledge_map_key = self._type_map[target_type] if not target_knowledge_map_key: eprint( "ERROR: Expected to find '%s' in the response._type_map, but did not" % target_type) raise Exception( "Expected to find '%s' in the response._type_map, but did not" % target_type) node_bindings.append( NodeBinding(qg_id=target_knowledge_map_key, kg_id=edge.target_id)) # if target_knowledge_map_key not in node_bindings: # node_bindings[target_knowledge_map_key] = list() # node_bindings_dict[target_knowledge_map_key] = dict() # if edge.target_id not in node_bindings_dict[target_knowledge_map_key]: # node_bindings[target_knowledge_map_key].append(edge.target_id) # node_bindings_dict[target_knowledge_map_key][edge.target_id] = 1 #### Try to figure out how the edge fits into the query_graph for the knowledge map source_target_key = "e" + source_knowledge_map_key + "-" + target_knowledge_map_key target_source_key = "e" + target_knowledge_map_key + "-" + source_knowledge_map_key if edge.type in self._type_map: knowledge_map_key = self._type_map[edge.type] elif source_target_key in self._type_map: knowledge_map_key = source_target_key elif target_source_key in self._type_map: knowledge_map_key = target_source_key else: eprint( "ERROR: Expected to find '%s' or '%s' or '%s' in the response._type_map, but did not" % (edge.type, source_target_key, target_source_key)) knowledge_map_key = "ERROR" edge_bindings.append( EdgeBinding(qg_id=knowledge_map_key, kg_id=edge.id)) # if knowledge_map_key not in edge_bindings: # edge_bindings[knowledge_map_key] = list() # edge_bindings_dict[knowledge_map_key] = dict() # if edge.id not in edge_bindings_dict[knowledge_map_key]: # edge_bindings[knowledge_map_key].append(edge.id) # edge_bindings_dict[knowledge_map_key][edge.id] = 1 # Create the result (potential answer) result1 = Result() result1.reasoner_id = "RTX" result1.description = description result1.confidence = confidence if suppress_bindings is False: result1.node_bindings = node_bindings result1.edge_bindings = edge_bindings # Create a KnowledgeGraph object and put the list of nodes and edges into it #### This is still legal, then is redundant with the knowledge map, so leave it out maybe knowledge_graph = KnowledgeGraph() knowledge_graph.nodes = node_objects knowledge_graph.edges = edge_objects if suppress_bindings is True: result1.result_graph = knowledge_graph # Put the first result (potential answer) into the message self._results.append(result1) self.message.results = self._results # Increment the number of results self._num_results += 1 if self._num_results == 1: self.message.code_description = "%s result found" % self._num_results else: self.message.code_description = "%s results found" % self._num_results #### Finish and return the result if requested if return_result: return result1 else: pass
def add_split_results(self, knowledge_graph, result_bindings): """ Populate the object model with the resulting raw knowledge_graph and result_bindings (initially from QueryGraphReasoner) :param nodes: knowledge_graph in native RTX KG dump :param edges: result_bindings in a native format from QueryGraphReasoner :return: none """ #### Add the knowledge_graph nodes regular_node_attributes = [ "id", "uri", "name", "description", "symbol" ] for input_node in knowledge_graph["nodes"]: node = Node() for attribute in regular_node_attributes: if attribute in input_node: setattr(node, attribute, input_node[attribute]) node.type = [input_node["category"]] #node.node_attributes = FIXME self.message.knowledge_graph.nodes.append(node) #### Add the knowledge_graph edges regular_edge_attributes = [ "id", "type", "relation", "source_id", "target_id", "is_defined_by", "defined_datetime", "provided_by", "weight", "evidence_type", "qualifiers", "negated", "", "" ] for input_edge in knowledge_graph["edges"]: edge = Edge() for attribute in regular_edge_attributes: if attribute in input_edge: setattr(edge, attribute, input_edge[attribute]) if "probability" in input_edge: edge.confidence = input_edge["probability"] # missing edge properties: defined_datetime, weight, publications, evidence_type, qualifiers, negated # extra edge properties: predicate, #edge.edge_attributes = FIXME #edge.publications = FIXME self.message.knowledge_graph.edges.append(edge) #### Add each result self.message.results = [] for input_result in result_bindings: result = Result() result.description = "No description available" result.essence = "?" #result.essence_type = "?" #result.row_data = "?" #result.score = 0 #result.score_name = "?" #result.score_direction = "?" result.confidence = 1.0 result.result_type = "individual query answer" result.reasoner_id = "RTX" result.result_graph = None result.node_bindings = input_result["nodes"] # #### Convert each binding value to a list because the viewer requires it # for binding in result.node_bindings: # result.node_bindings[binding] = [ result.node_bindings[binding] ] result.edge_bindings = input_result["edges"] self.message.results.append(result) #### Set the code_description n_results = len(result_bindings) plural = "s" if n_results == 1: plural = "" self.message.code_description = f"{n_results} result{plural} found" #### Complete normally return ()
def answer(self, entity, use_json=False): """ Answer a question of the type "What is X" but is general: :param entity: KG neo4j node name (eg "carbetocin") :param use_json: If the answer should be in Translator standardized API output format :return: a description and type of the node """ #### See if this entity is in the KG via the index eprint("Looking up '%s' in KgNodeIndex" % entity) kgNodeIndex = KGNodeIndex() curies = kgNodeIndex.get_curies(entity) #### If not in the KG, then return no information if not curies: if not use_json: return None else: error_code = "TermNotFound" error_message = "This concept is not in our knowledge graph" response = FormatOutput.FormatResponse(0) response.add_error_message(error_code, error_message) return response.message # Get label/kind of node the source is eprint("Getting properties for '%s'" % curies[0]) properties = RU.get_node_properties(curies[0]) eprint("Properties are:") eprint(properties) #### By default, return the results just as a plain simple list of data structures if not use_json: return properties #### Or, if requested, format the output as the standardized API output format else: #### Create a stub Message object response = FormatOutput.FormatResponse(0) response.message.table_column_names = [ "id", "type", "name", "description", "uri" ] response.message.code_description = None #### Create a Node object and fill it node1 = Node() node1.id = properties["id"] node1.uri = properties["uri"] node1.type = [properties["category"]] node1.name = properties["name"] node1.description = properties["description"] #### Create the first result (potential answer) result1 = Result() result1.id = "http://arax.ncats.io/api/v1/result/0000" result1.description = "The term %s is in our knowledge graph and is defined as %s" % ( properties["name"], properties["description"]) result1.confidence = 1.0 result1.essence = properties["name"] result1.essence_type = properties["category"] node_types = ",".join(node1.type) result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ] #### Create a KnowledgeGraph object and put the list of nodes and edges into it result_graph = KnowledgeGraph() result_graph.nodes = [node1] result_graph.edges = [] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the message results = [result1] response.message.results = results #### Also put the union of all result_graph components into the top Message KnowledgeGraph #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result response.message.knowledge_graph = result_graph #### Also manufacture a query_graph post hoc qnode1 = QNode() qnode1.id = "n00" qnode1.curie = properties["id"] qnode1.type = None query_graph = QueryGraph() query_graph.nodes = [qnode1] query_graph.edges = [] response.message.query_graph = query_graph #### Create the corresponding knowledge_map node_binding = NodeBinding(qg_id="n00", kg_id=properties["id"]) result1.node_bindings = [node_binding] result1.edge_bindings = [] #eprint(response.message) return response.message
def _create_ngd_node(kg2_node: Node) -> Node: ngd_node = Node() ngd_node.id = kg2_node.id ngd_node.name = kg2_node.name ngd_node.type = kg2_node.type return ngd_node
def add_subgraph(self, nodes, edges, plain_text, confidence): """ Populate the object model using networkx neo4j subgraph :param nodes: nodes in the subgraph (g.nodes(data=True)) :param edges: edges in the subgraph (g.edges(data=True)) :return: none """ # Get the relevant info from the nodes and edges node_keys = [] node_descriptions = dict() node_names = dict() node_labels = dict() node_uuids = dict() node_accessions = dict() node_iris = dict() node_uuids2iri = dict() node_curies = dict() node_uuids2curie = dict() for u, data in nodes: node_keys.append(u) node_descriptions[u] = data['properties']['description'] node_names[u] = data['properties']['name'] node_labels[u] = list(set(data['labels']).difference({'Base'}))[0] node_uuids[u] = data['properties']['UUID'] node_accessions[u] = data['properties']['accession'] node_iris[u] = data['properties']['iri'] node_uuids2iri[data['properties'] ['UUID']] = data['properties']['iri'] node_curies[u] = data['properties']['curie_id'] node_uuids2curie[data['properties'] ['UUID']] = data['properties']['curie_id'] edge_keys = [] edge_types = dict() edge_source_db = dict() edge_source_iri = dict() edge_target_iri = dict() edge_source_curie = dict() edge_target_curie = dict() for u, v, data in edges: edge_keys.append((u, v)) edge_types[(u, v)] = data['type'] edge_source_db[(u, v)] = data['properties']['sourcedb'] edge_source_iri[( u, v)] = node_uuids2iri[data['properties']['source_node_uuid']] edge_target_iri[( u, v)] = node_uuids2iri[data['properties']['target_node_uuid']] edge_source_curie[( u, v)] = node_uuids2curie[data['properties']['source_node_uuid']] edge_target_curie[( u, v)] = node_uuids2curie[data['properties']['target_node_uuid']] # For each node, populate the relevant information node_objects = [] node_iris_to_node_object = dict() for node_key in node_keys: node = Node() node.id = node_curies[node_key] node.type = node_labels[node_key] node.name = node_names[node_key] node.accession = node_accessions[node_key] node.description = node_descriptions[node_key] node_objects.append(node) node_iris_to_node_object[node_iris[node_key]] = node # for each edge, create an edge between them edge_objects = [] for u, v in edge_keys: edge = Edge() edge.type = edge_types[(u, v)] edge.source_id = node_iris_to_node_object[edge_source_iri[(u, v)]].id edge.target_id = node_iris_to_node_object[edge_target_iri[(u, v)]].id edge.origin_list = [] edge.origin_list.append( edge_source_db[(u, v)] ) # TODO: check with eric if this really should be a list and if it should contain the source DB('s) edge_objects.append(edge) # Create the result (potential answer) result1 = Result() #result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345" #result1.id = "-1" result1.text = plain_text result1.confidence = confidence # Create a ResultGraph object and put the list of nodes and edges into it result_graph = ResultGraph() result_graph.node_list = node_objects result_graph.edge_list = edge_objects # Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph # Put the first result (potential answer) into the response self._result_list.append(result1) self.response.result_list = self._result_list # Increment the number of results self._num_results += 1 if self._num_results == 1: self.response.message = "%s result found" % self._num_results else: self.response.message = "%s results found" % self._num_results
def queryTerm(self, term): method = "queryTerm" attributes = self.findTermAttributesAndTypeByName(term) message = self.createMessage() if ( attributes["status"] == 'OK' ): message.code_description = "1 result found" message.table_column_names = [ "id", "type", "name", "description", "uri" ] #### Create a Node object and fill it node1 = Node() node1.id = "MESH:" + attributes["id"] node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"] node1.type = [ attributes["type"] ] node1.name = attributes["name"] node1.description = attributes["description"] #### Create the first result (potential answer) result1 = Result() result1.id = "http://rtx.ncats.io/api/v1/result/0000" result1.description = "The term " + attributes["name"] + " refers to " + attributes["description"] result1.confidence = 1.0 result1.essence = attributes["name"] result1.essence_type = attributes["type"] node_types = ",".join(node1.type) result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ] #### Create a KnowledgeGraph object and put the list of nodes and edges into it result_graph = KnowledgeGraph() result_graph.nodes = [ node1 ] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the message results = [ result1 ] message.results = results #### Also put the union of all result_graph components into the top Message KnowledgeGraph #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result message.knowledge_graph = result_graph #### Also manufacture a query_graph post hoc qnode1 = QNode() qnode1.node_id = "n00" qnode1.curie = "MESH:" + attributes["id"] qnode1.type = None query_graph = QueryGraph() query_graph.nodes = [ qnode1 ] query_graph.edges = [] message.query_graph = query_graph #### Create the corresponding knowledge_map knowledge_map = { "n00": "MESH:" + attributes["id"] } result1.knowledge_map = knowledge_map else: message.message_code = "TermNotFound" message.code_description = "Unable to find this term in MeSH. No further information is available at this time." message.id = None return message
def test1(self): #### Create the response object and fill it with attributes about the response response = Response() response.context = "http://translator.ncats.io" response.id = "http://rtx.ncats.io/api/v1/response/1234" response.type = "medical_translator_query_response" response.tool_version = "RTX 0.4" response.schema_version = "0.5" response.datetime = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") response.original_question_text = "what proteins are affected by sickle cell anemia" response.restated_question_text = "Which proteins are affected by sickle cell anemia?" response.result_code = "OK" response.message = "1 result found" #### Create a disease node node1 = Node() node1.id = "http://omim.org/entry/603903" node1.type = "disease" node1.name = "sickle cell anemia" node1.accession = "OMIM:603903" node1.description = "A disease characterized by chronic hemolytic anemia..." #### Create a protein node node2 = Node() node2.id = "https://www.uniprot.org/uniprot/P00738" node2.type = "protein" node2.name = "Haptoglobin" node2.symbol = "HP" node2.accession = "UNIPROT:P00738" node2.description = "Haptoglobin captures, and combines with free plasma hemoglobin..." #### Create a node attribute node2attribute1 = NodeAttribute() node2attribute1.type = "comment" node2attribute1.name = "Complex_description" node2attribute1.value = "The Hemoglobin/haptoglobin complex is composed of a haptoglobin dimer bound to two hemoglobin alpha-beta dimers" node2.node_attributes = [node2attribute1] #### Create an edge between these 2 nodes edge1 = Edge() edge1.type = "is_caused_by_a_defect_in" edge1.source_id = node1.id edge1.target_id = node2.id edge1.confidence = 1.0 #### Add an origin and property for the edge origin1 = Origin() origin1.id = "https://api.monarchinitiative.org/api/bioentity/disease/OMIM:603903/genes/" origin1.type = "Monarch_BioLink_API_Relationship" #### Add an attribute attribute1 = EdgeAttribute() attribute1.type = "PubMed_article" attribute1.name = "Orthopaedic Manifestations of Sickle Cell Disease" attribute1.value = None attribute1.url = "https://www.ncbi.nlm.nih.gov/pubmed/29309293" origin1.attribute_list = [attribute1] edge1.origin_list = [origin1] #### Create the first result (potential answer) result1 = Result() result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345" result1.text = "A free text description of this result" result1.confidence = 0.932 #### Create a ResultGraph object and put the list of nodes and edges into it result_graph = ResultGraph() result_graph.node_list = [node1, node2] result_graph.edge_list = [edge1] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the response result_list = [result1] response.result_list = result_list print(response)