Пример #1
0
def upload_astore(conn, path, table_name=None):
    '''
    Function to load the local astore file to server

    Parameters:

    ----------

    conn : a cas connection.

    path : str
        Specifies the full path of the astore file.

    table_name : str
        Specifies the name of the cas table on server, to hold the astore object.


    Return:

    ----------

    None

    '''
    import swat as sw
    conn.loadactionset('astore')

    with open(path, 'br') as f:
        astore_byte = f.read()

    store_ = sw.blob(astore_byte)

    if table_name is None:
        table_name = random_name('ASTORE')
    conn.astore.upload(rstore=table_name, store=store_)
Пример #2
0
def update_attr(conn, model_name, attr_value, attr_set, attr_key, attr_type):
 
    '''
    Update individual extended model attributes

    Key/value pair required to specify extended attributes.  Provide
    correct syntax for calling attribute action.

    Parameters
    ----------
    conn : CAS
        The CAS connection object
    model_name : string
        Specifies the name of the deep learning model
    attr_value : list of bytes, int, int64, double, or char
        Numeric/character representation of attribute
    attr_set : string
        Name of attribute set to update
    attr_key : string
        Key name of attribute
    attr_type : string
        One of double, int64, int, char, or binary

    '''
 
    if attr_type.lower() in ['double', 'int64', 'int', 'char', 'binary']:
        if attr_type.lower() == 'char':
            attr_helper(conn, model_name, attr_set, attr_key, attr_value)
        else:
            if len(attr_value) > 1:
                      
                # create binary blob using SWAT 
                attr_blob = sw.blob(attr_value)
            
                # write attribute
                attr_helper(conn, model_name, attr_set, attr_key, attr_blob)
            
            else:
                attr_helper(conn, model_name, attr_set, attr_key, attr_value[0])
    else:
        raise TypeError('Extended table attributes must be one of :\n'
                        '1. character string;\n'
                        '2. double precision value/list,\n'
                        '3. int64 value/list,\n'
                        '4. int value/list,\n'
                        '5. binary blob.')
Пример #3
0
def upload():
    if request.method == 'POST':
        # check if the post request has the file part
        if 'file' not in request.files:
            print('No file part')
            return redirect(url_for('index'))
        file = request.files['file']
        if file.filename == '':
            print('No selected file')
            return redirect(url_for('index'))
        if file:
            filename = secure_filename(file.filename)
            filepath = os.path.join(UPLOAD_FOLDER, filename)
            file.save(filepath)

            # CAS Image Processing - load images
            s = swat.CAS('localhost', 5570, authinfo=AUTHINFO)
            s.loadactionset('image')
            s.loadimages(filepath, casout={'name': 'img'})
            # Load astore - for now astore exists in / and caslib is session scoped
            # TODO - user upload astore
            s.loadactionset('astore')
            with open('/' + ASTORE + '.astore', 'rb') as f:
                store_ = swat.blob(f.read())
                s.astore.upload(rstore=ASTORE, store=store_)
            # s.score(table={'name':'img'}, out={'name':'score'}, rstore={'name':ASTORE, 'caslib':ASTORE_LIB})
            s.score(table={'name': 'img'},
                    out={'name': 'score'},
                    rstore={'name': ASTORE})
            scores = s.fetch(
                table={'name': 'score'})['Fetch'].loc[0, :].to_dict()
            label = scores.pop('I__label_')
            s.droptable(ASTORE)
            s.endSession()
            return jsonify({
                'imgUrl':
                url_for('uploaded_file', filename=filename),
                'label':
                label,
                'scores':
                scores
            })

    return redirect(url_for('index'))
Пример #4
0
def upload_astore(conn, path, table_name=None):
    '''
    Load the local astore file to server

    Parameters
    ----------
    conn : CAS
        The CAS connection object
    path : string
        Specifies the client-side path of the astore file
    table_name : string, or casout options
        Specifies the name of the cas table on server to put the astore object

    '''
    conn.loadactionset('astore')

    with open(path, 'br') as f:
        astore_byte = f.read()

    store_ = sw.blob(astore_byte)

    if table_name is None:
        table_name = random_name('ASTORE')
    conn.astore.upload(rstore=table_name, store=store_)
Пример #5
0
    def test_quartet_fit(self):

        if self.server_dir is None:
            unittest.TestCase.skipTest(
                self,
                "DLPY_DATA_DIR_SERVER is not set in the environment variables")

        # test using one data table
        resnet18_model = ResNet18_Caffe(self.s,
                                        width=224,
                                        height=224,
                                        random_crop='RESIZETHENCROP',
                                        random_flip='HV',
                                        random_mutation='random')
        embedding_layer = Dense(n=4)
        model1 = EmbeddingModel.build_embedding_model(
            resnet18_model,
            model_table='test1',
            embedding_model_type='quartet',
            margin=-3.0,
            embedding_layer=embedding_layer)
        res1 = model1.print_summary()
        print(res1)

        img_path = self.server_dir + 'DogBreed_small'
        my_images = ImageEmbeddingTable.load_files(
            self.s,
            path=img_path,
            n_samples=64,
            embedding_model_type='quartet')
        solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001,
                                                step_size=20),
                            clip_grad_max=100,
                            clip_grad_min=-100)
        optimizer = Optimizer(algorithm=solver,
                              mini_batch_size=8,
                              log_level=3,
                              max_epochs=5,
                              reg_l2=0.0001)
        gpu = Gpu(devices=1)
        train_res = model1.fit_embedding_model(data=my_images,
                                               optimizer=optimizer,
                                               n_threads=1,
                                               gpu=gpu,
                                               seed=1234,
                                               record_seed=23435)
        print(train_res)
        score_res = model1.predict(data=my_images,
                                   gpu=gpu,
                                   random_crop='RESIZETHENCROP')
        print(score_res)

        # test deploy as astore
        self.s.loadactionset('astore')
        my_images_test = ImageEmbeddingTable.load_files(
            self.s,
            path=img_path,
            n_samples=5,
            embedding_model_type='quartet',
            resize_width=224,
            resize_height=224)

        # case 1: deploy the full model as astore
        model1.deploy_embedding_model(output_format='astore',
                                      model_type='full',
                                      path=self.local_dir)

        full_astore = os.path.join(self.local_dir,
                                   model1.model_name + '.astore')
        with open(full_astore, mode='rb') as file:
            file_content = file.read()

        store_ = swat.blob(file_content)
        self.s.astore.upload(rstore=dict(name='test1_full', replace=True),
                             store=store_)

        # run with one gpu
        self.s.score(
            rstore=dict(name='test1_full'),
            table=my_images_test,
            nthreads=1,
            # _debug=dict(ranks=0),
            copyvars=['_path_', '_path_1', '_path_2', '_path_3'],
            options=[
                dict(name='usegpu', value='1'),
                dict(name='NDEVICES', value='1'),
                dict(name='DEVICE0', value='0')
            ],
            out=dict(name='astore_score1_full_gpu', replace=True))

        res = self.s.fetch(table='astore_score1_full_gpu')
        print(res)

        # remove the astore file
        os.remove(full_astore)

        # case 2: deploy the branch model as astore
        model1.deploy_embedding_model(output_format='astore',
                                      model_type='branch',
                                      path=self.local_dir)

        br_astore = os.path.join(self.local_dir,
                                 model1.model_name + '_branch.astore')
        with open(br_astore, mode='rb') as file:
            file_content = file.read()

        store_ = swat.blob(file_content)
        self.s.astore.upload(rstore=dict(name='test1_br', replace=True),
                             store=store_)

        # run with one gpu
        self.s.score(
            rstore=dict(name='test1_br'),
            table=my_images_test,
            nthreads=1,
            # _debug=dict(ranks=0),
            copyvars=['_path_'],
            options=[
                dict(name='usegpu', value='1'),
                dict(name='NDEVICES', value='1'),
                dict(name='DEVICE0', value='0')
            ],
            out=dict(name='astore_score1_br_gpu', replace=True))

        res = self.s.fetch(table='astore_score1_br_gpu')
        print(res)

        os.remove(br_astore)