def get_model(self): # get symbol from symbol.py self.symbol = symbol.get_symbol(self, self.label_num, self.ignore_label, self.aspp, self.aspp_stride, self.atrous_type, self.bn_use_global_stats, self.relu_type) # load model if self.load_model_prefix is not None and self.load_epoch > 0: self.symbol, self.arg_params, self.aux_params = \ mx.model.load_checkpoint(os.path.join(self.load_model_dir, self.load_model_prefix), self.load_epoch)
parser.add_argument('--num-examples', type=int, default=int(2140 * 0.8), help='the number of training examples') # need log to file? parser.add_argument('--log-dir', type=str, default="/tmp/", help='directory of the log file') parser.add_argument('--load-epoch', type=int, help="load the model on an epoch using the model-prefix") parser.add_argument('--save-model-prefix', type=str, help='the prefix of the model to save') # todo statistic about mean data args = parser.parse_args() import symbol net = symbol.get_symbol(output_dim = 30) from data import FileIter train = FileIter( eval_ratio = 0.2, is_val = False, data_name = "data", batch_size = args.batch_size, label_name = "lr_label" ) val = FileIter( eval_ratio = 0.2, is_val = True, data_name = "data",
import mxnet as mx import dataLoader, deploy, symbol, debug network = symbol.get_symbol(num_classes = 10) # print network.list_arguments() net = mx.mod.Module(symbol = network, context = mx.gpu(0), fixed_param_names = [ "fc1_weight", "fc1_bias", "fc2_weight", "fc2_bias"]) trainDataIter, valDataIter = dataLoader.get_data_iter() num_epoch = 120 try: net.fit(train_data = trainDataIter, eval_data = valDataIter, epoch_end_callback = debug.epoch_end_callback, eval_end_callback = debug.eval_end_callback, eval_metric = deploy.get_eval_metric(), optimizer = "sgd", initializer = deploy.get_initializer(), num_epoch = num_epoch, begin_epoch = deploy.get_begin_epoch() ) results = net.score(valDataIter, deploy.get_eval_metric(), reset = True) print "[Info] Validation Result:", results results = net.score(trainDataIter, deploy.get_eval_metric(), reset = True) print "[Info] Training Result:", results print "[Info] Saving Parameters..." net.save_params('models/test2_{}.params'.format(str(num_epoch)))
def actualize(self, ev, env): """ Return the constant value. The dispatched event is simply ignored. """ ll = [s for s in symbol.get_symbol(self.name)] return ll
def __function_name(self): s = symbol.get_symbol(self.event.function) if s: return s[0] else: return None
def resolve(s): r = symbol.get_symbol(s) return set(r)