def test_conv7(): x = Symbol("x") y = Symbol("y") assert sin(x / 3) == sin(sympy.Symbol("x") / 3) assert cos(x / 3) == cos(sympy.Symbol("x") / 3) assert tan(x / 3) == tan(sympy.Symbol("x") / 3) assert cot(x / 3) == cot(sympy.Symbol("x") / 3) assert csc(x / 3) == csc(sympy.Symbol("x") / 3) assert sec(x / 3) == sec(sympy.Symbol("x") / 3) assert asin(x / 3) == asin(sympy.Symbol("x") / 3) assert acos(x / 3) == acos(sympy.Symbol("x") / 3) assert atan(x / 3) == atan(sympy.Symbol("x") / 3) assert acot(x / 3) == acot(sympy.Symbol("x") / 3) assert acsc(x / 3) == acsc(sympy.Symbol("x") / 3) assert asec(x / 3) == asec(sympy.Symbol("x") / 3) assert sin(x / 3)._sympy_() == sympy.sin(sympy.Symbol("x") / 3) assert sin(x / 3)._sympy_() != sympy.cos(sympy.Symbol("x") / 3) assert cos(x / 3)._sympy_() == sympy.cos(sympy.Symbol("x") / 3) assert tan(x / 3)._sympy_() == sympy.tan(sympy.Symbol("x") / 3) assert cot(x / 3)._sympy_() == sympy.cot(sympy.Symbol("x") / 3) assert csc(x / 3)._sympy_() == sympy.csc(sympy.Symbol("x") / 3) assert sec(x / 3)._sympy_() == sympy.sec(sympy.Symbol("x") / 3) assert asin(x / 3)._sympy_() == sympy.asin(sympy.Symbol("x") / 3) assert acos(x / 3)._sympy_() == sympy.acos(sympy.Symbol("x") / 3) assert atan(x / 3)._sympy_() == sympy.atan(sympy.Symbol("x") / 3) assert acot(x / 3)._sympy_() == sympy.acot(sympy.Symbol("x") / 3) assert acsc(x / 3)._sympy_() == sympy.acsc(sympy.Symbol("x") / 3) assert asec(x / 3)._sympy_() == sympy.asec(sympy.Symbol("x") / 3)
def test_conv7(): x = Symbol("x") y = Symbol("y") assert sin(x/3) == sin(sympy.Symbol("x") / 3) assert cos(x/3) == cos(sympy.Symbol("x") / 3) assert tan(x/3) == tan(sympy.Symbol("x") / 3) assert cot(x/3) == cot(sympy.Symbol("x") / 3) assert csc(x/3) == csc(sympy.Symbol("x") / 3) assert sec(x/3) == sec(sympy.Symbol("x") / 3) assert asin(x/3) == asin(sympy.Symbol("x") / 3) assert acos(x/3) == acos(sympy.Symbol("x") / 3) assert atan(x/3) == atan(sympy.Symbol("x") / 3) assert acot(x/3) == acot(sympy.Symbol("x") / 3) assert acsc(x/3) == acsc(sympy.Symbol("x") / 3) assert asec(x/3) == asec(sympy.Symbol("x") / 3) assert sin(x/3)._sympy_() == sympy.sin(sympy.Symbol("x") / 3) assert sin(x/3)._sympy_() != sympy.cos(sympy.Symbol("x") / 3) assert cos(x/3)._sympy_() == sympy.cos(sympy.Symbol("x") / 3) assert tan(x/3)._sympy_() == sympy.tan(sympy.Symbol("x") / 3) assert cot(x/3)._sympy_() == sympy.cot(sympy.Symbol("x") / 3) assert csc(x/3)._sympy_() == sympy.csc(sympy.Symbol("x") / 3) assert sec(x/3)._sympy_() == sympy.sec(sympy.Symbol("x") / 3) assert asin(x/3)._sympy_() == sympy.asin(sympy.Symbol("x") / 3) assert acos(x/3)._sympy_() == sympy.acos(sympy.Symbol("x") / 3) assert atan(x/3)._sympy_() == sympy.atan(sympy.Symbol("x") / 3) assert acot(x/3)._sympy_() == sympy.acot(sympy.Symbol("x") / 3) assert acsc(x/3)._sympy_() == sympy.acsc(sympy.Symbol("x") / 3) assert asec(x/3)._sympy_() == sympy.asec(sympy.Symbol("x") / 3)
def tan(expr): """Tangent""" if type(expr) == GC: return GC(se.tan(expr.expr), { s: d * (1 + se.tan(expr.expr)**2) for s, d in expr.gradients.items() }) return se.tan(expr)
def reproject_axis_gen2(X, Y, Z, axis, cal): #(phase_cal, tilt_cal, curve_cal, gibPhase_cal, gibMag_cal, ogeePhase_cal, ogeeMag_cal) = cal B = atan2(Z, X) Ydeg = cal.tilt + (-1 if axis else 1) * math.pi / 6. tanA = tan(Ydeg) normXZ = sqrt(X * X + Z * Z) asinArg = tanA * Y / normXZ sinYdeg = sin(Ydeg) cosYdeg = cos(Ydeg) sinPart = sin(B - asin(asinArg) + cal.ogeephase) * cal.ogeemag normXYZ = sqrt(X * X + Y * Y + Z * Z) modAsinArg = Y / normXYZ / cosYdeg asinOut = asin(modAsinArg) mod, acc = calc_cal_series(asinOut) BcalCurved = sinPart + cal.curve asinArg2 = asinArg + mod * BcalCurved / (cosYdeg - acc * BcalCurved * sinYdeg) asinOut2 = asin(asinArg2) sinOut2 = sin(B - asinOut2 + cal.gibpha) return B - asinOut2 + sinOut2 * cal.gibmag - cal.phase - math.pi / 2.
def test_conv7b(): x = sympy.Symbol("x") y = sympy.Symbol("y") assert sympify(sympy.sin(x / 3)) == sin(Symbol("x") / 3) assert sympify(sympy.sin(x / 3)) != cos(Symbol("x") / 3) assert sympify(sympy.cos(x / 3)) == cos(Symbol("x") / 3) assert sympify(sympy.tan(x / 3)) == tan(Symbol("x") / 3) assert sympify(sympy.cot(x / 3)) == cot(Symbol("x") / 3) assert sympify(sympy.csc(x / 3)) == csc(Symbol("x") / 3) assert sympify(sympy.sec(x / 3)) == sec(Symbol("x") / 3) assert sympify(sympy.asin(x / 3)) == asin(Symbol("x") / 3) assert sympify(sympy.acos(x / 3)) == acos(Symbol("x") / 3) assert sympify(sympy.atan(x / 3)) == atan(Symbol("x") / 3) assert sympify(sympy.acot(x / 3)) == acot(Symbol("x") / 3) assert sympify(sympy.acsc(x / 3)) == acsc(Symbol("x") / 3) assert sympify(sympy.asec(x / 3)) == asec(Symbol("x") / 3)
def test_conv7b(): x = sympy.Symbol("x") y = sympy.Symbol("y") assert sympify(sympy.sin(x/3)) == sin(Symbol("x") / 3) assert sympify(sympy.sin(x/3)) != cos(Symbol("x") / 3) assert sympify(sympy.cos(x/3)) == cos(Symbol("x") / 3) assert sympify(sympy.tan(x/3)) == tan(Symbol("x") / 3) assert sympify(sympy.cot(x/3)) == cot(Symbol("x") / 3) assert sympify(sympy.csc(x/3)) == csc(Symbol("x") / 3) assert sympify(sympy.sec(x/3)) == sec(Symbol("x") / 3) assert sympify(sympy.asin(x/3)) == asin(Symbol("x") / 3) assert sympify(sympy.acos(x/3)) == acos(Symbol("x") / 3) assert sympify(sympy.atan(x/3)) == atan(Symbol("x") / 3) assert sympify(sympy.acot(x/3)) == acot(Symbol("x") / 3) assert sympify(sympy.acsc(x/3)) == acsc(Symbol("x") / 3) assert sympify(sympy.asec(x/3)) == asec(Symbol("x") / 3)