Пример #1
0
def test_kernel_2d_6():
    L = dy(dy(u))

    # ...
    expected = Derivative(k, yi, yi)
    assert(evaluate(L, u, Kernel('K'), (Tuple(xi, yi),)) == expected)
    # ...

    # ...
    expected = Derivative(k, yj, yj)
    assert(evaluate(L, u, Kernel('K'), (Tuple(xj, yj),)) == expected)
    # ...

    # ...
    expected = Derivative(k, yi, yi, yj, yj)
    assert(evaluate(L, u, Kernel('K'), (Tuple(xi,yi), Tuple(xj,yj))) == expected)
Пример #2
0
def test_kernel_2d_11():
    phi = Constant('phi')
    L = phi * u + dx(u) + dy(u) + dz(dz(u))

    # ...
    expected = phi * k(xi, yi, zi) + Derivative(k, xi) + Derivative(
        k, yi) + Derivative(k, zi, zi)
    assert (evaluate(L, u, Kernel('K'), (Tuple(xi, yi, zi), )) == expected)
    # ...

    # ...
    expected = phi * k(xj, yj, zj) + Derivative(k, xj) + Derivative(
        k, yj) + Derivative(k, zj, zj)
    assert (evaluate(L, u, Kernel('K'), (Tuple(xj, yj, zj), )) == expected)
    # ...

    # ...
    expected = (phi**2 * k(xi, yi, zi, xj, yj, zj) + phi * Derivative(k, xi) +
                phi * Derivative(k, xj) + phi * Derivative(k, yi) +
                phi * Derivative(k, yj) + phi * Derivative(k, zi, zi) +
                phi * Derivative(k, zj, zj) + Derivative(k, xi, xj) +
                Derivative(k, xi, yj) + Derivative(k, yi, xj) +
                Derivative(k, yi, yj) + Derivative(k, xi, zj, zj) +
                Derivative(k, yi, zj, zj) + Derivative(k, zi, zi, xj) +
                Derivative(k, zi, zi, yj) + Derivative(k, zi, zi, zj, zj))
    assert (evaluate(L, u, Kernel('K'),
                     (Tuple(xi, yi, zi), Tuple(xj, yj, zj))) == expected)
Пример #3
0
def test_kernel_2d_2():
    L = phi * u + dx(u) + dy(dy(u))

    # ...
    K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi)))
    K = update_kernel(K, RBF, ((xi, yi), (xj, yj)))

    expected = theta_1 * theta_2 * (phi**2 - 1.0 * phi *
                                    (xi - xj) - 1.0 * phi * (yi - yj) + 1.0 *
                                    (xi - xj) * (yi - yj)) * exp(
                                        -0.5 *
                                        (xi - xj)**2) * exp(-0.5 *
                                                            (yi - yj)**2)
    assert (simplify(K - expected) == 0)
    # ...

    # ...
    K = evaluate(L, u, Kernel('K'), (Tuple(xj, yj)))
    K = update_kernel(K, RBF, ((xi, yi), (xj, yj)))

    expected = theta_1 * theta_2 * (phi**2 + 1.0 * phi *
                                    (xi - xj) + 1.0 * phi * (yi - yj) + 1.0 *
                                    (xi - xj) * (yi - yj)) * exp(
                                        -0.5 *
                                        (xi - xj)**2) * exp(-0.5 *
                                                            (yi - yj)**2)
    assert (simplify(K - expected) == 0)
    # ...

    # ...
    K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi), Tuple(xj, yj)))
    K = update_kernel(K, RBF, ((xi, yi), (xj, yj)))

    expected = theta_1 * theta_2 * (phi**2 + 2.0 * phi *
                                    ((yi - yj)**2 - 1) - 1.0 *
                                    (xi - xj)**2 + 1.0 * (yi - yj)**4 - 6.0 *
                                    (yi - yj)**2 + 4.0) * exp(
                                        -0.5 *
                                        (xi - xj)**2) * exp(-0.5 *
                                                            (yi - yj)**2)
    assert (simplify(K - expected) == 0)
Пример #4
0
def test_kernel_2d_10():
    L = dx(dx(u)) + dy(dy(u)) + dz(dz(u))

    # ...
    expected = Derivative(k, xi, xi) + Derivative(k, yi, yi) + Derivative(
        k, zi, zi)
    assert (evaluate(L, u, Kernel('K'), (Tuple(xi, yi, zi), )) == expected)
    # ...

    # ...
    expected = Derivative(k, xj, xj) + Derivative(k, yj, yj) + Derivative(
        k, zj, zj)
    assert (evaluate(L, u, Kernel('K'), (Tuple(xj, yj, zj), )) == expected)
    # ...

    # ...
    expected = (Derivative(k, xi, xi, xj, xj) + Derivative(k, xi, xi, yj, yj) +
                Derivative(k, xi, xi, zj, zj) + Derivative(k, yi, yi, xj, xj) +
                Derivative(k, yi, yi, yj, yj) + Derivative(k, yi, yi, zj, zj) +
                Derivative(k, zi, zi, xj, xj) + Derivative(k, zi, zi, yj, yj) +
                Derivative(k, zi, zi, zj, zj))
    assert (evaluate(L, u, Kernel('K'),
                     (Tuple(xi, yi, zi), Tuple(xj, yj, zj))) == expected)
Пример #5
0
def test_kernel_3d_2():
    L = phi * u + dx(u) + dy(u) + dz(dz(u))

    # ...
    K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi, zi)))
    K = update_kernel(K, RBF, ((xi, yi, zi), (xj, yj, zj)))

    expected = theta_1 * theta_2 * theta_3 * (
        phi**3 + 1.0 * phi**2 * (-xi + xj) + 1.0 * phi**2 *
        (-yi + yj) + 1.0 * phi**2 * (-zi + zj) + 1.0 * phi * (xi - xj) *
        (yi - yj) + 1.0 * phi * (xi - xj) * (zi - zj) + 1.0 * phi * (yi - yj) *
        (zi - zj) - 1.0 * (xi - xj) * (yi - yj) *
        (zi - zj)) * exp(-0.5 *
                         (xi - xj)**2) * exp(-0.5 *
                                             (yi - yj)**2) * exp(-0.5 *
                                                                 (zi - zj)**2)
    assert (simplify(K - expected) == 0)
    # ...

    # ...
    K = evaluate(L, u, Kernel('K'), (Tuple(xj, yj, zj)))
    K = update_kernel(K, RBF, ((xi, yi, zi), (xj, yj, zj)))

    expected = theta_1 * theta_2 * theta_3 * (
        phi**3 + 1.0 * phi**2 * (xi - xj) + 1.0 * phi**2 *
        (yi - yj) + 1.0 * phi**2 * (zi - zj) + 1.0 * phi * (xi - xj) *
        (yi - yj) + 1.0 * phi * (xi - xj) * (zi - zj) + 1.0 * phi * (yi - yj) *
        (zi - zj) + 1.0 * (xi - xj) * (yi - yj) *
        (zi - zj)) * exp(-0.5 *
                         (xi - xj)**2) * exp(-0.5 *
                                             (yi - yj)**2) * exp(-0.5 *
                                                                 (zi - zj)**2)
    assert (simplify(K - expected) == 0)
    # ...

    # ...
    K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi, zi), Tuple(xj, yj, zj)))
    K = update_kernel(K, RBF, ((xi, yi, zi), (xj, yj, zj)))

    expected = theta_1 * theta_2 * theta_3 * (
        phi**2 + 2.0 * phi * ((zi - zj)**2 - 1) - 1.0 * (xi - xj)**2 - 2.0 *
        (xi - xj) * (yi - yj) - 1.0 * (yi - yj)**2 + 1.0 * (zi - zj)**4 - 6.0 *
        (zi - zj)**2 + 5.0) * exp(-0.5 * (xi - xj)**2) * exp(
            -0.5 * (yi - yj)**2) * exp(-0.5 * (zi - zj)**2)
    assert (simplify(K - expected) == 0)
Пример #6
0
def test_est_2d_2():
    u = Unknown('u', ldim=2)
    phi = Constant('phi')

    # ... define a partial differential operator as a lambda function
    L = lambda u: phi * u + dx(u) + dy(dy(u))
    L_expected = lambda u: 2. * u + dx(u) + dy(dy(u))
    # ...

    # ... symbolic functions for unknown and rhs
    from sympy.abc import x, y
    from sympy import sin, cos

    u_sym = x**2 + y
    f_sym = L_expected(u_sym)
    # ...

    # ... lambdification + evaluation
    from numpy import linspace, meshgrid, zeros
    from numpy.random import rand

    u_num = lambdify((x, y), u_sym, "numpy")
    f_num = lambdify((x, y), f_sym, "numpy")

    x_u = rand(50, 2)
    x_f = x_u

    us = u_num(x_u[:, 0], x_u[:, 1])
    fs = f_num(x_f[:, 0], x_f[:, 1])
    # ...

    #    eps = 1.e-6
    eps = 1.e-5
    #    eps = 1.e-4

    niter = 10
    #    niter = 1
    phis = []
    scores = []
    for i in range(0, niter):
        print('> sample ', i)

        # compute the likelihood
        #        nlml = NLML(L(u), u, 'CSE', debug=False)
        nlml = NLML(L(u), u, 'SE', debug=False)

        # set values
        nlml.set_u(x_u, us)
        nlml.set_f(x_f, fs)

        # ... using pure python implementation
        x_start = rand(len(nlml.args))

        _nlml = lambda y: nlml(y, s_u=eps, s_f=eps)

        m = nelder_mead(_nlml,
                        x_start,
                        step=0.1,
                        no_improve_thr=10e-4,
                        no_improv_break=4,
                        max_iter=0,
                        alpha=.5,
                        gamma=1.5,
                        rho=-0.5,
                        sigma=0.5,
                        verbose=False)

        args = exp(m[0])
        score = m[1]
        phis.append(nlml.map_args(args)['phi'])
        scores.append(score)
    # ...

    phis = asarray(phis)
    scores = asarray(scores)
    i_max = argmax(scores)
    print(phis[i_max])
    print(scores[i_max])
    print(scores)
    print(phis)
Пример #7
0
def test_est_2d_3():
    u = Unknown('u', ldim=2)
    phi = Constant('phi')

    # ... define a partial differential operator as a lambda function
    L = lambda u: phi * u + dx(u) + dy(dy(u))
    L_expected = lambda u: 2. * u + dx(u) + dy(dy(u))
    # ...

    # ... symbolic functions for unknown and rhs
    from sympy.abc import x, y
    from sympy import sin, cos

    u_sym = x**2 + y
    f_sym = L_expected(u_sym)
    # ...

    # ... lambdification + evaluation
    from numpy import linspace, meshgrid, zeros
    from numpy.random import rand

    u_num = lambdify((x, y), u_sym, "numpy")
    f_num = lambdify((x, y), f_sym, "numpy")

    x_u = rand(50, 2)

    x_f = x_u

    us = u_num(x_u[:, 0], x_u[:, 1])
    fs = f_num(x_f[:, 0], x_f[:, 1])
    # ...

    # compute the likelihood
    #    nlml = NLML(L(u), u, 'SE')
    nlml = NLML(L(u), u, 'RBF')

    # set values
    nlml.set_u(x_u, us)
    nlml.set_f(x_f, fs)

    from numpy.random import rand, normal
    from numpy import exp, ones, log

    # ... using pure python implementation
    from symgp.nelder_mead import nelder_mead

    phi_expected = 2.
    phi_var = 0.5

    n_samples = 1000
    x_starts = rand(len(nlml.args), n_samples)
    i_phi = list(nlml.args).index('phi')
    x_starts[i_phi, :] = log(normal(phi_expected, phi_var, n_samples))

    phis = []
    scores = []
    phiso = []
    scoreso = []
    for i in range(0, n_samples):
        print('> sample ', i)

        x_start = x_starts[:, i]

        # ...
        def f(params):
            params[i_phi] = x_starts[i_phi, i]
            return nlml(params)

        m = nelder_mead(f,
                        x_start,
                        step=0.1,
                        no_improve_thr=10e-4,
                        no_improv_break=4,
                        max_iter=0,
                        alpha=.5,
                        gamma=1.5,
                        rho=-0.5,
                        sigma=0.5,
                        verbose=False)

        args = exp(m[0])
        score = m[1]

        phis.append(nlml.map_args(args)['phi'])
        scores.append(score)
        # ...

        # ...
        m = nelder_mead(nlml,
                        x_start,
                        step=0.1,
                        no_improve_thr=10e-4,
                        no_improv_break=4,
                        max_iter=0,
                        alpha=.5,
                        gamma=1.5,
                        rho=-0.5,
                        sigma=0.5,
                        verbose=False)

        args = exp(m[0])
        score = m[1]

        phiso.append(nlml.map_args(args)['phi'])
        scoreso.append(score)
        # ...

    from numpy import savetxt
    savetxt('est_2d/phis.txt', asarray(phis))
    savetxt('est_2d/scores.txt', asarray(scores))
    savetxt('est_2d/phiso.txt', asarray(phiso))
    savetxt('est_2d/scoreso.txt', asarray(scoreso))

    plt.plot(phis, scores, '.b', label=r'fixed $\phi$', alpha=0.4)
    plt.plot(phiso, scoreso, '.r', label=r'free $\phi$', alpha=0.4)
    plt.axvline(x=phi_expected, color='green', alpha=0.5)

    plt.xlabel(r'$\phi$')
    plt.ylabel(r'Likelihood $\mathcal{L}$')
    title = '$L u := {}$'.format(latex(L(u)))
    title += '\n'
    title += r'$\phi_{exact}' + ' := {}$'.format(phi_expected)
    plt.title(title)
    plt.legend()
    plt.show()
Пример #8
0
def test_est_2d_1():
    u = Unknown('u', ldim=2)
    phi = Constant('phi')

    # ... define a partial differential operator as a lambda function
    L = lambda u: phi * u + dx(u) + dy(dy(u))
    L_expected = lambda u: 2. * u + dx(u) + dy(dy(u))
    # ...

    # ... symbolic functions for unknown and rhs
    from sympy.abc import x, y
    from sympy import sin, cos

    u_sym = x**2 + y
    f_sym = L_expected(u_sym)
    # ...

    # ... lambdification + evaluation
    from numpy import linspace, meshgrid, zeros
    from numpy.random import rand

    u_num = lambdify((x, y), u_sym, "numpy")
    f_num = lambdify((x, y), f_sym, "numpy")

    #    t = linspace(0, 1, 5)
    #    x,y = meshgrid(t, t)
    #    x_u = zeros((x.size, 2))
    #    x_u[:,0] = x.reshape(x.size)
    #    x_u[:,1] = y.reshape(y.size)

    x_u = rand(100, 2)

    x_f = x_u

    us = u_num(x_u[:, 0], x_u[:, 1])
    fs = f_num(x_f[:, 0], x_f[:, 1])
    # ...

    # compute the likelihood
    debug = True
    nlml = NLML(L(u), u, 'SE', debug=debug)

    # set values
    nlml.set_u(x_u, us)
    nlml.set_f(x_f, fs)

    from numpy.random import rand
    from numpy import exp, ones, log

    # ... using pure python implementation
    from symgp.nelder_mead import nelder_mead

    x_start = rand(len(nlml.args))
    print('> x_start = ', x_start)
    m = nelder_mead(nlml,
                    x_start,
                    step=0.1,
                    no_improve_thr=10e-4,
                    no_improv_break=4,
                    max_iter=0,
                    alpha=.5,
                    gamma=1.5,
                    rho=-0.5,
                    sigma=0.5,
                    verbose=False)

    args = exp(m[0])
    print('> estimated phi = ', nlml.map_args(args)['phi'])

    if debug:
        plt.xlabel('number of data')
        plt.ylabel(r'eigenvalues in log-scale')
        plt.legend()
        plt.show()