Пример #1
0
 def test_stepper_gives_diagnostic_tendency_quantity(self):
     input_properties = {
         'input1': {
             'dims': ['dim1', 'dim2'],
             'units': 's',
         }
     }
     diagnostic_properties = {}
     tendency_properties = {
         'output1': {
             'dims': ['dim1'],
             'units': 'm/s'
         },
     }
     diagnostic_output = {}
     tendency_output = {
         'output1': np.ones([10]) * 2.,
     }
     prognostic = self.prognostic_class(input_properties,
                                        diagnostic_properties,
                                        tendency_properties,
                                        diagnostic_output, tendency_output)
     stepper = self.timestepper_class(prognostic,
                                      tendencies_in_diagnostics=True)
     tendency_name = 'output1_tendency_from_{}'.format(
         stepper.__class__.__name__)
     assert tendency_name in stepper.diagnostic_properties.keys()
     assert len(stepper.diagnostic_properties) == 1
     assert stepper.diagnostic_properties[tendency_name]['dims'] == ['dim1']
     assert units_are_compatible(
         stepper.input_properties['output1']['units'], 'm')
     assert units_are_compatible(
         stepper.diagnostic_properties[tendency_name]['units'], 'm/s')
Пример #2
0
def test_prognostic_composite_two_components_tendency_compatible_units():
    prognostic1 = MockTendencyComponent(
        input_properties={},
        diagnostic_properties={},
        tendency_properties={'tend1': {
            'dims': ['dim1'],
            'units': 'km/s',
        }},
        diagnostic_output={},
        tendency_output={},
    )
    prognostic2 = MockTendencyComponent(
        input_properties={},
        diagnostic_properties={},
        tendency_properties={
            'tend1': {
                'dims': ['dim1'],
                'units': 'm/day'
            },
        },
        diagnostic_output={},
        tendency_output={},
    )
    composite = TendencyComponentComposite(prognostic1, prognostic2)
    assert 'tend1' in composite.tendency_properties.keys()
    assert composite.tendency_properties['tend1']['dims'] == ['dim1']
    assert units_are_compatible(
        composite.tendency_properties['tend1']['units'], 'm/s')
Пример #3
0
def test_prognostic_composite_two_components_compatible_input_units():
    prognostic1 = MockTendencyComponent(
        input_properties={
            'input1': {
                'dims': ['dims1', 'dims2'],
                'units': 'km',
            },
        },
        diagnostic_properties={},
        tendency_properties={},
        diagnostic_output={},
        tendency_output={},
    )
    prognostic2 = MockTendencyComponent(
        input_properties={
            'input1': {
                'dims': ['dims1', 'dims2'],
                'units': 'cm',
            },
        },
        diagnostic_properties={},
        tendency_properties={},
        diagnostic_output={},
        tendency_output={},
    )
    composite = TendencyComponentComposite(prognostic1, prognostic2)
    assert 'input1' in composite.input_properties.keys()
    assert composite.input_properties['input1']['dims'] == ['dims1', 'dims2']
    assert units_are_compatible(composite.input_properties['input1']['units'],
                                'm')
Пример #4
0
 def test_stepper_requires_input_for_input_quantity(self):
     input_properties = {
         'input1': {
             'dims': ['dim1', 'dim2'],
             'units': 's',
         }
     }
     diagnostic_properties = {}
     tendency_properties = {
         'output1': {
             'dims': ['dim1'],
             'units': 'm/s'
         },
     }
     diagnostic_output = {}
     tendency_output = {
         'output1': np.ones([10]) * 2.,
     }
     prognostic = self.prognostic_class(input_properties,
                                        diagnostic_properties,
                                        tendency_properties,
                                        diagnostic_output, tendency_output)
     stepper = self.timestepper_class(prognostic)
     assert 'input1' in stepper.input_properties.keys()
     assert stepper.input_properties['input1']['dims'] == ['dim1', 'dim2']
     assert units_are_compatible(
         stepper.input_properties['input1']['units'], 's')
     assert len(stepper.diagnostic_properties) == 0
Пример #5
0
 def test_tendencies_in_diagnostics_one_tendency_with_component_name(self):
     input_properties = {}
     diagnostic_properties = {}
     tendency_properties = {'output1': {'dims': ['dim1'], 'units': 'm/s'}}
     diagnostic_output = {}
     tendency_output = {
         'output1': np.ones([10]) * 2.,
     }
     prognostic = self.prognostic_class(input_properties,
                                        diagnostic_properties,
                                        tendency_properties,
                                        diagnostic_output, tendency_output)
     stepper = self.timestepper_class(prognostic,
                                      tendencies_in_diagnostics=True,
                                      name='component')
     state = {
         'time':
         timedelta(0),
         'output1':
         DataArray(np.ones([10]) * 10., dims=['dim1'], attrs={'units':
                                                              'm'}),
     }
     diagnostics, _ = stepper(state, timedelta(seconds=5))
     assert 'output1_tendency_from_component' in diagnostics.keys()
     assert len(diagnostics['output1_tendency_from_component'].dims) == 1
     assert 'dim1' in diagnostics['output1_tendency_from_component'].dims
     assert units_are_compatible(
         diagnostics['output1_tendency_from_component'].attrs['units'],
         'm s^-1')
     assert np.allclose(
         diagnostics['output1_tendency_from_component'].values, 2.)
Пример #6
0
 def test_stepper_outputs_stepped_quantity(self):
     input_properties = {}
     diagnostic_properties = {}
     tendency_properties = {
         'output1': {
             'dims': ['dim1'],
             'units': 'm/s'
         },
     }
     diagnostic_output = {}
     tendency_output = {
         'output1': np.ones([10]) * 2.,
     }
     prognostic = self.prognostic_class(input_properties,
                                        diagnostic_properties,
                                        tendency_properties,
                                        diagnostic_output, tendency_output)
     stepper = self.timestepper_class(prognostic)
     assert 'output1' in stepper.output_properties.keys()
     assert stepper.output_properties['output1']['dims'] == ['dim1']
     assert units_are_compatible(
         stepper.output_properties['output1']['units'], 'm')
Пример #7
0
 def test_stepper_gives_diagnostic_quantity(self):
     input_properties = {}
     diagnostic_properties = {
         'diag1': {
             'dims': ['dim2'],
             'units': '',
         }
     }
     tendency_properties = {}
     diagnostic_output = {}
     tendency_output = {}
     prognostic = self.prognostic_class(input_properties,
                                        diagnostic_properties,
                                        tendency_properties,
                                        diagnostic_output, tendency_output)
     stepper = self.timestepper_class(prognostic,
                                      tendencies_in_diagnostics=True,
                                      name='component')
     assert 'diag1' in stepper.diagnostic_properties.keys()
     assert stepper.diagnostic_properties['diag1']['dims'] == ['dim2']
     assert units_are_compatible(
         stepper.diagnostic_properties['diag1']['units'], '')
     assert len(stepper.input_properties) == 0
     assert len(stepper.output_properties) == 0