Пример #1
0
def deltaproduct(f, limit):
    """
    Handle products containing a KroneckerDelta.

    See Also
    ========

    deltasummation
    sympy.functions.special.tensor_functions.KroneckerDelta
    sympy.concrete.products.product
    """
    from sympy.concrete.products import product

    if ((limit[2] - limit[1]) < 0) is True:
        return S.One

    if not f.has(KroneckerDelta):
        return product(f, limit)

    if f.is_Add:
        # Identify the term in the Add that has a simple KroneckerDelta
        delta = None
        terms = []
        for arg in sorted(f.args, key=default_sort_key):
            if delta is None and _has_simple_delta(arg, limit[0]):
                delta = arg
            else:
                terms.append(arg)
        newexpr = f.func(*terms)
        k = Dummy("kprime", integer=True)
        if isinstance(limit[1], int) and isinstance(limit[2], int):
            result = deltaproduct(newexpr, limit) + sum([
                deltaproduct(newexpr, (limit[0], limit[1], ik - 1)) *
                delta.subs(limit[0], ik) *
                deltaproduct(newexpr, (limit[0], ik + 1, limit[2])) for ik in range(int(limit[1]), int(limit[2] + 1))]
            )
        else:
            result = deltaproduct(newexpr, limit) + deltasummation(
                deltaproduct(newexpr, (limit[0], limit[1], k - 1)) *
                delta.subs(limit[0], k) *
                deltaproduct(newexpr, (limit[0], k + 1, limit[2])), (k, limit[1], limit[2]), no_piecewise=True
            )
        return _remove_multiple_delta(result)

    delta, _ = _extract_delta(f, limit[0])

    if not delta:
        g = _expand_delta(f, limit[0])
        if f != g:
            from sympy import factor
            try:
                return factor(deltaproduct(g, limit))
            except AssertionError:
                return deltaproduct(g, limit)
        return product(f, limit)

    from sympy import Eq
    c = Eq(limit[2], limit[1] - 1)
    return _remove_multiple_delta(f.subs(limit[0], limit[1])*KroneckerDelta(limit[2], limit[1])) + \
        S.One*_simplify_delta(KroneckerDelta(limit[2], limit[1] - 1))
Пример #2
0
def deltaproduct(f, limit):
    """
    Handle products containing a KroneckerDelta.

    See Also
    ========

    deltasummation
    sympy.functions.special.tensor_functions.KroneckerDelta
    sympy.concrete.products.product
    """
    from sympy.concrete.products import product

    if ((limit[2] - limit[1]) < 0) == True:
        return S.One

    if not f.has(KroneckerDelta):
        return product(f, limit)

    if f.is_Add:
        # Identify the term in the Add that has a simple KroneckerDelta
        delta = None
        terms = []
        for arg in sorted(f.args, key=default_sort_key):
            if delta is None and _has_simple_delta(arg, limit[0]):
                delta = arg
            else:
                terms.append(arg)
        newexpr = f.func(*terms)
        k = Dummy("kprime", integer=True)
        if isinstance(limit[1], int) and isinstance(limit[2], int):
            result = deltaproduct(newexpr, limit) + sum([
                deltaproduct(newexpr, (limit[0], limit[1], ik - 1)) *
                delta.subs(limit[0], ik) *
                deltaproduct(newexpr, (limit[0], ik + 1, limit[2]))
                for ik in range(int(limit[1]), int(limit[2] + 1))
            ])
        else:
            result = deltaproduct(newexpr, limit) + deltasummation(
                deltaproduct(newexpr, (limit[0], limit[1], k - 1)) *
                delta.subs(limit[0], k) *
                deltaproduct(newexpr, (limit[0], k + 1, limit[2])),
                (k, limit[1], limit[2]),
                no_piecewise=_has_simple_delta(newexpr, limit[0]))
        return _remove_multiple_delta(result)

    delta, _ = _extract_delta(f, limit[0])

    if not delta:
        g = _expand_delta(f, limit[0])
        if f != g:
            from sympy import factor
            try:
                return factor(deltaproduct(g, limit))
            except AssertionError:
                return deltaproduct(g, limit)
        return product(f, limit)

    return _remove_multiple_delta(f.subs(limit[0], limit[1])*KroneckerDelta(limit[2], limit[1])) + \
        S.One*_simplify_delta(KroneckerDelta(limit[2], limit[1] - 1))
Пример #3
0
def test_special_products():
    # Wallis product
    assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \
        4**n*factorial(n)**2/rf(S.Half, n)/rf(Rational(3, 2), n)

    # Euler's product formula for sin
    assert product(1 + a/k**2, (k, 1, n)) == \
        rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2
Пример #4
0
def test__eval_product():
    from sympy.abc import i, n
    # issue 4809
    a = Function('a')
    assert product(2*a(i), (i, 1, n)) == 2**n * Product(a(i), (i, 1, n))
    # issue 4810
    assert product(2**i, (i, 1, n)) == 2**(n*(n + 1)/2)
    k, m = symbols('k m', integer=True)
    assert product(2**i, (i, k, m)) == 2**(-k**2/2 + k/2 + m**2/2 + m/2)
    n = Symbol('n', negative=True, integer=True)
    p = Symbol('p', positive=True, integer=True)
    assert product(2**i, (i, n, p)) == 2**(-n**2/2 + n/2 + p**2/2 + p/2)
    assert product(2**i, (i, p, n)) == 2**(n**2/2 + n/2 - p**2/2 + p/2)
Пример #5
0
def test_multiple_products():
    assert product(x, (n, 1, k), (k, 1, m)) == x**(m**2/2 + m/2)
    assert product(f(n), (
        n, 1, m), (m, 1, k)) == Product(f(n), (n, 1, m), (m, 1, k)).doit()
    assert Product(f(n), (m, 1, k), (n, 1, k)).doit() == \
        Product(Product(f(n), (m, 1, k)), (n, 1, k)).doit() == \
        product(f(n), (m, 1, k), (n, 1, k)) == \
        product(product(f(n), (m, 1, k)), (n, 1, k)) == \
        Product(f(n)**k, (n, 1, k))
    assert Product(
        x, (x, 1, k), (k, 1, n)).doit() == Product(factorial(k), (k, 1, n))

    assert Product(x**k, (n, 1, k), (k, 1, m)).variables == [n, k]
Пример #6
0
 def maxima_product(a1, a2, a3, a4):
     return product(a1, (a2, a3, a4))
Пример #7
0
def test_evalf_mul():
    # SymPy should not try to expand this; it should be handled term-wise
    # in evalf through mpmath
    assert NS(product(1 + sqrt(n) * I, (n, 1, 500)),
              1) == '5.e+567 + 2.e+568*I'
Пример #8
0
def test_issue_14036():
    a, n = symbols('a n')
    assert product(1 - a**2 / (n*pi)**2, [n, 1, oo]) != 0
Пример #9
0
def test_issue_9983():
    n = Symbol('n', integer=True, positive=True)
    p = Product(1 + 1/n**Rational(2, 3), (n, 1, oo))
    assert p.is_convergent() is S.false
    assert product(1 + 1/n**Rational(2, 3), (n, 1, oo)) == p.doit()
Пример #10
0
def test_product_pow():
    # issue 4817
    assert product(2**f(k), (k, 1, n)) == 2**Sum(f(k), (k, 1, n))
    assert product(2**(2*f(k)), (k, 1, n)) == 2**Sum(2*f(k), (k, 1, n))
Пример #11
0
def test_rational_products():
    assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n)
Пример #12
0
def test_simple_products():
    assert product(2, (k, a, n)) == 2**(n - a + 1)
    assert product(k, (k, 1, n)) == factorial(n)
    assert product(k**3, (k, 1, n)) == factorial(n)**3

    assert product(k + 1, (k, 0, n - 1)) == factorial(n)
    assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a)

    assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5)
    assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5)
    assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2)

    assert isinstance(product(k**k, (k, 1, n)), Product)

    assert Product(x**k, (k, 1, n)).variables == [k]

    raises(ValueError, lambda: Product(n))
    raises(ValueError, lambda: Product(n, k))
    raises(ValueError, lambda: Product(n, k, 1))
    raises(ValueError, lambda: Product(n, k, 1, 10))
    raises(ValueError, lambda: Product(n, (k, 1)))

    assert product(1, (n, 1, oo)) == 1  # issue 8301
    assert product(2, (n, 1, oo)) is oo
    assert product(-1, (n, 1, oo)).func is Product