Пример #1
0
def test_latex_printer():
    r = Function('r')('t')
    assert VectorLatexPrinter().doprint(r**2) == "r^{2}"
    r2 = Function('r^2')('t')
    assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}'
    ra = Function('r__a')('t')
    assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}'
Пример #2
0
def test_noncommutative_issue_15131():
    x = Symbol('x', commutative=False)
    t = Symbol('t', commutative=False)
    fx = Function('Fx', commutative=False)(x)
    ft = Function('Ft', commutative=False)(t)
    A = Symbol('A', commutative=False)
    eq = fx * A * ft
    eqdt = eq.diff(t)
    assert eqdt.args[-1] == ft.diff(t)
Пример #3
0
def test_lambdify_Derivative_arg_issue_16468():
    f = Function('f')(x)
    fx = f.diff()
    assert lambdify((f, fx), f + fx)(10, 5) == 15
    assert eval(lambdastr((f, fx), f / fx))(10, 5) == 2
    raises(SyntaxError, lambda: eval(lambdastr(
        (f, fx), f / fx, dummify=False)))
    assert eval(lambdastr((f, fx), f / fx, dummify=True))(10, 5) == 2
    assert eval(lambdastr((fx, f), f / fx, dummify=True))(S(10), 5) == S.Half
    assert lambdify(fx, 1 + fx)(41) == 42
    assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
Пример #4
0
def idiff(eq, y, x, n=1):
    """Return ``dy/dx`` assuming that ``eq == 0``.

    Parameters
    ==========

    y : the dependent variable or a list of dependent variables (with y first)
    x : the variable that the derivative is being taken with respect to
    n : the order of the derivative (default is 1)

    Examples
    ========

    >>> from sympy.abc import x, y, a
    >>> from sympy.geometry.util import idiff

    >>> circ = x**2 + y**2 - 4
    >>> idiff(circ, y, x)
    -x/y
    >>> idiff(circ, y, x, 2).simplify()
    (-x**2 - y**2)/y**3

    Here, ``a`` is assumed to be independent of ``x``:

    >>> idiff(x + a + y, y, x)
    -1

    Now the x-dependence of ``a`` is made explicit by listing ``a`` after
    ``y`` in a list.

    >>> idiff(x + a + y, [y, a], x)
    -Derivative(a, x) - 1

    See Also
    ========

    sympy.core.function.Derivative: represents unevaluated derivatives
    sympy.core.function.diff: explicitly differentiates wrt symbols

    """
    if is_sequence(y):
        dep = set(y)
        y = y[0]
    elif isinstance(y, Symbol):
        dep = {y}
    elif isinstance(y, Function):
        pass
    else:
        raise ValueError(
            "expecting x-dependent symbol(s) or function(s) but got: %s" % y)

    f = {
        s: Function(s.name)(x)
        for s in eq.free_symbols if s != x and s in dep
    }

    if isinstance(y, Symbol):
        dydx = Function(y.name)(x).diff(x)
    else:
        dydx = y.diff(x)

    eq = eq.subs(f)
    derivs = {}
    for i in range(n):
        yp = solve(eq.diff(x), dydx)[0].subs(derivs)
        if i == n - 1:
            return yp.subs([(v, k) for k, v in f.items()])
        derivs[dydx] = yp
        eq = dydx - yp
        dydx = dydx.diff(x)
Пример #5
0
def apart(f, z, **flags):
    """Compute partial fraction decomposition of a rational function.

       Given a rational function 'f', performing only gcd operations
       over the algebraic closue of the initial field of definition,
       compute full partial fraction decomposition with fractions
       having linear denominators.

       For all other kinds of expressions the input is returned in an
       unchanged form. Note however, that 'apart' function can thread
       over sums and relational operators.

       Note that no factorization of the initial denominator of 'f' is
       needed.  The final decomposition is formed in terms of a sum of
       RootSum instances.  By default RootSum tries to compute all its
       roots to simplify itself. This behaviour can be however avoided
       by seting the keyword flag evaluate=False, which will make this
       function return a formal decomposition.

       >>> from sympy import *
       >>> x,y = symbols('xy')

       >>> apart(y/(x+2)/(x+1), x)
       y/(1 + x) - y/(2 + x)

       >>> apart(1/(1+x**5), x, evaluate=False)
       RootSum(Lambda(_a, -1/5/(x - _a)*_a), x**5 + 1, x)

       For more information on the implemented algorithm refer to:

       [1] M. Bronstein, B. Salvy, Full partial fraction decomposition
           of rational functions,  in: M. Bronstein,  ed., Proceedings
           ISSAC '93, ACM Press, Kiev, Ukraine, 1993, pp. 157-160.

    """
    if not f.has(z):
        return f

    f = Poly.cancel(f, z)

    P, Q = f.as_numer_denom()

    if not Q.has(z):
        return f

    partial, r = div(P, Q, z)
    f, q, U = r / Q, Q, []

    u = Function('u')(z)
    a = Symbol('a', dummy=True)

    for k, d in enumerate(poly_sqf(q, z)):
        n, b = k + 1, d.as_basic()
        U += [ u.diff(z, k) ]

        h = together(Poly.cancel(f*b**n, z) / u**n)

        H, subs = [h], []

        for j in range(1, n):
            H += [ H[-1].diff(z) / j ]

        for j in range(1, n+1):
            subs += [ (U[j-1], b.diff(z, j) / j) ]

        for j in range(0, n):
            P, Q = together(H[j]).as_numer_denom()

            for i in range(0, j+1):
                P = P.subs(*subs[j-i])

            Q = Q.subs(*subs[0])

            P, Q = Poly(P, z), Poly(Q, z)

            G = poly_gcd(P, d)
            D = poly_quo(d, G)

            B, g = poly_half_gcdex(Q, D)
            b = poly_rem(P * poly_quo(B, g), D)

            numer = b.as_basic()
            denom = (z-a)**(n-j)

            expr = numer.subs(z, a) / denom

            partial += RootSum(Lambda(a, expr), D, **flags)

    return partial