Пример #1
0
def test_issue_7638():
    f = pi / log(sqrt(2))
    assert ((1 + I)**(I * f / 2))**0.3 == (1 + I)**(0.15 * I * f)
    # if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
    # sign will be +/-1; for the previous "small arg" case, it didn't matter
    # that this could not be proved
    assert (1 + I)**(4 * I * f) == ((1 + I)**(12 * I * f))**Rational(1, 3)

    assert (((1 + I)**(I * (1 + 7 * f)))**Rational(1, 3)).exp == Rational(1, 3)
    r = symbols('r', real=True)
    assert sqrt(r**2) == abs(r)
    assert cbrt(r**3) != r
    assert sqrt(Pow(2 * I, 5 * S.Half)) != (2 * I)**Rational(5, 4)
    p = symbols('p', positive=True)
    assert cbrt(p**2) == p**Rational(2, 3)
    assert NS(((0.2 + 0.7 * I)**(0.7 + 1.0 * I))**(0.5 - 0.1 * I),
              1) == '0.4 + 0.2*I'
    assert sqrt(1 / (1 + I)) == sqrt(1 - I) / sqrt(2)  # or 1/sqrt(1 + I)
    e = 1 / (1 - sqrt(2))
    assert sqrt(e) == I / sqrt(-1 + sqrt(2))
    assert e**Rational(-1, 2) == -I * sqrt(-1 + sqrt(2))
    assert sqrt((cos(1)**2 + sin(1)**2 -
                 1)**(3 + I)).exp in [S.Half, Rational(3, 2) + I / 2]
    assert sqrt(r**Rational(4, 3)) != r**Rational(2, 3)
    assert sqrt((p + I)**Rational(4, 3)) == (p + I)**Rational(2, 3)
    assert sqrt((p - p**2 * I)**2) == p - p**2 * I
    assert sqrt((p + r * I)**2) != p + r * I
    e = (1 + I / 5)
    assert sqrt(e**5) == e**(5 * S.Half)
    assert sqrt(e**6) == e**3
    assert sqrt((1 + I * r)**6) != (1 + I * r)**3
Пример #2
0
def test_root():
    from sympy.abc import x
    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)

    assert root(2, 2) == sqrt(2)
    assert root(2, 1) == 2
    assert root(2, 3) == 2**Rational(1, 3)
    assert root(2, 3) == cbrt(2)
    assert root(2, -5) == 2**Rational(4, 5) / 2

    assert root(-2, 1) == -2

    assert root(-2, 2) == sqrt(2) * I
    assert root(-2, 1) == -2

    assert root(x, 2) == sqrt(x)
    assert root(x, 1) == x
    assert root(x, 3) == x**Rational(1, 3)
    assert root(x, 3) == cbrt(x)
    assert root(x, -5) == x**Rational(-1, 5)

    assert root(x, n) == x**(1 / n)
    assert root(x, -n) == x**(-1 / n)

    assert root(x, n, k) == x**(1 / n) * (-1)**(2 * k / n)
Пример #3
0
def test_issue_7638():
    f = pi/log(sqrt(2))
    assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
    # if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
    # sign will be +/-1; for the previous "small arg" case, it didn't matter
    # that this could not be proved
    assert (1 + I)**(4*I*f) == ((1 + I)**(12*I*f))**(S(1)/3)

    assert (((1 + I)**(I*(1 + 7*f)))**(S(1)/3)).exp == S(1)/3
    r = symbols('r', real=True)
    assert sqrt(r**2) == abs(r)
    assert cbrt(r**3) != r
    assert sqrt(Pow(2*I, 5*S.Half)) != (2*I)**(5/S(4))
    p = symbols('p', positive=True)
    assert cbrt(p**2) == p**(2/S(3))
    assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I'
    assert sqrt(1/(1 + I)) == sqrt(1 - I)/sqrt(2)  # or 1/sqrt(1 + I)
    e = 1/(1 - sqrt(2))
    assert sqrt(e) == I/sqrt(-1 + sqrt(2))
    assert e**-S.Half == -I*sqrt(-1 + sqrt(2))
    assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp == S.Half
    assert sqrt(r**(4/S(3))) != r**(2/S(3))
    assert sqrt((p + I)**(4/S(3))) == (p + I)**(2/S(3))
    assert sqrt((p - p**2*I)**2) == p - p**2*I
    assert sqrt((p + r*I)**2) != p + r*I
    e = (1 + I/5)
    assert sqrt(e**5) == e**(5*S.Half)
    assert sqrt(e**6) == e**3
    assert sqrt((1 + I*r)**6) != (1 + I*r)**3
Пример #4
0
def test_root():
    from sympy.abc import x
    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)

    assert root(2, 2) == sqrt(2)
    assert root(2, 1) == 2
    assert root(2, 3) == 2**Rational(1, 3)
    assert root(2, 3) == cbrt(2)
    assert root(2, -5) == 2**Rational(4, 5)/2

    assert root(-2, 1) == -2

    assert root(-2, 2) == sqrt(2)*I
    assert root(-2, 1) == -2

    assert root(x, 2) == sqrt(x)
    assert root(x, 1) == x
    assert root(x, 3) == x**Rational(1, 3)
    assert root(x, 3) == cbrt(x)
    assert root(x, -5) == x**Rational(-1, 5)

    assert root(x, n) == x**(1/n)
    assert root(x, -n) == x**(-1/n)

    assert root(x, n, k) == x**(1/n)*(-1)**(2*k/n)
Пример #5
0
def test_nseries():
    x = Symbol('x')
    assert sqrt(I*x - 1)._eval_nseries(x, 4, None, 1) == I + x/2 + I*x**2/8 - x**3/16 + O(x**4)
    assert sqrt(I*x - 1)._eval_nseries(x, 4, None, -1) == -I - x/2 - I*x**2/8 + x**3/16 + O(x**4)
    assert cbrt(I*x - 1)._eval_nseries(x, 4, None, 1) == (-1)**(S(1)/3) - (-1)**(S(5)/6)*x/3 + \
    (-1)**(S(1)/3)*x**2/9 + 5*(-1)**(S(5)/6)*x**3/81 + O(x**4)
    assert cbrt(I*x - 1)._eval_nseries(x, 4, None, -1) == (-1)**(S(1)/3)*exp(-2*I*pi/3) - \
    (-1)**(S(5)/6)*x*exp(-2*I*pi/3)/3 + (-1)**(S(1)/3)*x**2*exp(-2*I*pi/3)/9 + \
    5*(-1)**(S(5)/6)*x**3*exp(-2*I*pi/3)/81 + O(x**4)
    assert (1 / (exp(-1/x) + 1/x))._eval_nseries(x, 2, None) == -x**2*exp(-1/x) + x
Пример #6
0
def test_issue_14000():
    assert isinstance(sqrt(4, evaluate=False), Pow) == True
    assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
    assert isinstance(root(16, 4, evaluate=False), Pow) == True

    assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
    assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
    assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False)

    assert root(16, 4, 2, evaluate=False).has(Pow) == True
    assert real_root(-8, 3, evaluate=False).has(Pow) == True
Пример #7
0
def test_issue_14000():
    assert isinstance(sqrt(4, evaluate=False), Pow) == True
    assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
    assert isinstance(root(16, 4, evaluate=False), Pow) == True

    assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
    assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
    assert root(4, 2, evaluate=False) == Pow(4, Rational(1, 2), evaluate=False)

    assert root(16, 4, 2, evaluate=False).has(Pow) == True
    assert real_root(-8, 3, evaluate=False).has(Pow) == True
Пример #8
0
def test_pow_1():
    assert ((1 + x)**2).nseries(x, n=5) == x**2 + 2 * x + 1

    # https://github.com/sympy/sympy/issues/21075
    assert ((sqrt(x) + 1)**2).nseries(x) == 2 * sqrt(x) + x + 1
    assert ((sqrt(x) + cbrt(x))**2).nseries(x) == 2*x**Rational(5, 6)\
        + x**Rational(2, 3) + x
Пример #9
0
def test_branch_cuts():
    assert limit(asin(I * x + 2), x, 0) == pi - asin(2)
    assert limit(asin(I * x + 2), x, 0, '-') == asin(2)
    assert limit(asin(I * x - 2), x, 0) == -asin(2)
    assert limit(asin(I * x - 2), x, 0, '-') == -pi + asin(2)
    assert limit(acos(I * x + 2), x, 0) == -acos(2)
    assert limit(acos(I * x + 2), x, 0, '-') == acos(2)
    assert limit(acos(I * x - 2), x, 0) == acos(-2)
    assert limit(acos(I * x - 2), x, 0, '-') == 2 * pi - acos(-2)
    assert limit(atan(x + 2 * I), x, 0) == I * atanh(2)
    assert limit(atan(x + 2 * I), x, 0, '-') == -pi + I * atanh(2)
    assert limit(atan(x - 2 * I), x, 0) == pi - I * atanh(2)
    assert limit(atan(x - 2 * I), x, 0, '-') == -I * atanh(2)
    assert limit(atan(1 / x), x, 0) == pi / 2
    assert limit(atan(1 / x), x, 0, '-') == -pi / 2
    assert limit(atan(x), x, oo) == pi / 2
    assert limit(atan(x), x, -oo) == -pi / 2
    assert limit(acot(x + S(1) / 2 * I), x, 0) == pi - I * acoth(S(1) / 2)
    assert limit(acot(x + S(1) / 2 * I), x, 0, '-') == -I * acoth(S(1) / 2)
    assert limit(acot(x - S(1) / 2 * I), x, 0) == I * acoth(S(1) / 2)
    assert limit(acot(x - S(1) / 2 * I), x, 0,
                 '-') == -pi + I * acoth(S(1) / 2)
    assert limit(acot(x), x, 0) == pi / 2
    assert limit(acot(x), x, 0, '-') == -pi / 2
    assert limit(asec(I * x + S(1) / 2), x, 0) == asec(S(1) / 2)
    assert limit(asec(I * x + S(1) / 2), x, 0, '-') == -asec(S(1) / 2)
    assert limit(asec(I * x - S(1) / 2), x, 0) == 2 * pi - asec(-S(1) / 2)
    assert limit(asec(I * x - S(1) / 2), x, 0, '-') == asec(-S(1) / 2)
    assert limit(acsc(I * x + S(1) / 2), x, 0) == acsc(S(1) / 2)
    assert limit(acsc(I * x + S(1) / 2), x, 0, '-') == pi - acsc(S(1) / 2)
    assert limit(acsc(I * x - S(1) / 2), x, 0) == -pi + acsc(S(1) / 2)
    assert limit(acsc(I * x - S(1) / 2), x, 0, '-') == -acsc(S(1) / 2)

    assert limit(log(I * x - 1), x, 0) == I * pi
    assert limit(log(I * x - 1), x, 0, '-') == -I * pi
    assert limit(log(-I * x - 1), x, 0) == -I * pi
    assert limit(log(-I * x - 1), x, 0, '-') == I * pi

    assert limit(sqrt(I * x - 1), x, 0) == I
    assert limit(sqrt(I * x - 1), x, 0, '-') == -I
    assert limit(sqrt(-I * x - 1), x, 0) == -I
    assert limit(sqrt(-I * x - 1), x, 0, '-') == I

    assert limit(cbrt(I * x - 1), x, 0) == (-1)**(S(1) / 3)
    assert limit(cbrt(I * x - 1), x, 0, '-') == -(-1)**(S(2) / 3)
    assert limit(cbrt(-I * x - 1), x, 0) == -(-1)**(S(2) / 3)
    assert limit(cbrt(-I * x - 1), x, 0, '-') == (-1)**(S(1) / 3)
Пример #10
0
def test_real_root():
    assert real_root(-8, 3) == -2
    assert real_root(-16, 4) == root(-16, 4)
    r = root(-7, 4)
    assert real_root(r) == r
    r1 = root(-1, 3)
    r2 = r1**2
    r3 = root(-1, 4)
    assert real_root(r1 + r2 + r3) == -1 + r2 + r3
    assert real_root(root(-2, 3)) == -root(2, 3)
    assert real_root(-8., 3) == -2
    x = Symbol('x')
    n = Symbol('n')
    g = real_root(x, n)
    assert g.subs(dict(x=-8, n=3)) == -2
    assert g.subs(dict(x=8, n=3)) == 2
    # give principle root if there is no real root -- if this is not desired
    # then maybe a Root class is needed to raise an error instead
    assert g.subs(dict(x=I, n=3)) == cbrt(I)
    assert g.subs(dict(x=-8, n=2)) == sqrt(-8)
    assert g.subs(dict(x=I, n=2)) == sqrt(I)
Пример #11
0
def test_real_root():
    assert real_root(-8, 3) == -2
    assert real_root(-16, 4) == root(-16, 4)
    r = root(-7, 4)
    assert real_root(r) == r
    r1 = root(-1, 3)
    r2 = r1**2
    r3 = root(-1, 4)
    assert real_root(r1 + r2 + r3) == -1 + r2 + r3
    assert real_root(root(-2, 3)) == -root(2, 3)
    assert real_root(-8., 3) == -2
    x = Symbol('x')
    n = Symbol('n')
    g = real_root(x, n)
    assert g.subs(dict(x=-8, n=3)) == -2
    assert g.subs(dict(x=8, n=3)) == 2
    # give principle root if there is no real root -- if this is not desired
    # then maybe a Root class is needed to raise an error instead
    assert g.subs(dict(x=I, n=3)) == cbrt(I)
    assert g.subs(dict(x=-8, n=2)) == sqrt(-8)
    assert g.subs(dict(x=I, n=2)) == sqrt(I)
Пример #12
0
def _minpoly_compose(ex, x, dom):
    """
    Computes the minimal polynomial of an algebraic element
    using operations on minimal polynomials

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x, y
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
    x**2 - 2*x - 1
    >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
    x**2*y**2 - 2*x*y - y**3 + 1

    """
    if ex.is_Rational:
        return ex.q * x - ex.p
    if ex is I:
        _, factors = factor_list(x**2 + 1, x, domain=dom)
        return x**2 + 1 if len(factors) == 1 else x - I

    if ex is S.GoldenRatio:
        _, factors = factor_list(x**2 - x - 1, x, domain=dom)
        if len(factors) == 1:
            return x**2 - x - 1
        else:
            return _choose_factor(factors, x, (1 + sqrt(5)) / 2, dom=dom)

    if ex is S.TribonacciConstant:
        _, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom)
        if len(factors) == 1:
            return x**3 - x**2 - x - 1
        else:
            fac = (1 + cbrt(19 - 3 * sqrt(33)) + cbrt(19 + 3 * sqrt(33))) / 3
            return _choose_factor(factors, x, fac, dom=dom)

    if hasattr(dom, 'symbols') and ex in dom.symbols:
        return x - ex

    if dom.is_QQ and _is_sum_surds(ex):
        # eliminate the square roots
        ex -= x
        while 1:
            ex1 = _separate_sq(ex)
            if ex1 is ex:
                return ex
            else:
                ex = ex1

    if ex.is_Add:
        res = _minpoly_add(x, dom, *ex.args)
    elif ex.is_Mul:
        f = Factors(ex).factors
        r = sift(f.items(),
                 lambda itx: itx[0].is_Rational and itx[1].is_Rational)
        if r[True] and dom == QQ:
            ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
            r1 = dict(r[True])
            dens = [y.q for y in r1.values()]
            lcmdens = reduce(lcm, dens, 1)
            neg1 = S.NegativeOne
            expn1 = r1.pop(neg1, S.Zero)
            nums = [base**(y.p * lcmdens // y.q) for base, y in r1.items()]
            ex2 = Mul(*nums)
            mp1 = minimal_polynomial(ex1, x)
            # use the fact that in SymPy canonicalization products of integers
            # raised to rational powers are organized in relatively prime
            # bases, and that in ``base**(n/d)`` a perfect power is
            # simplified with the root
            # Powers of -1 have to be treated separately to preserve sign.
            mp2 = ex2.q * x**lcmdens - ex2.p * neg1**(expn1 * lcmdens)
            ex2 = neg1**expn1 * ex2**Rational(1, lcmdens)
            res = _minpoly_op_algebraic_element(Mul,
                                                ex1,
                                                ex2,
                                                x,
                                                dom,
                                                mp1=mp1,
                                                mp2=mp2)
        else:
            res = _minpoly_mul(x, dom, *ex.args)
    elif ex.is_Pow:
        res = _minpoly_pow(ex.base, ex.exp, x, dom)
    elif ex.__class__ is sin:
        res = _minpoly_sin(ex, x)
    elif ex.__class__ is cos:
        res = _minpoly_cos(ex, x)
    elif ex.__class__ is tan:
        res = _minpoly_tan(ex, x)
    elif ex.__class__ is exp:
        res = _minpoly_exp(ex, x)
    elif ex.__class__ is CRootOf:
        res = _minpoly_rootof(ex, x)
    else:
        raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
    return res
    while remainder:
        lastremainder, (quotient,
                        remainder) = remainder, divmod(lastremainder,
                                                       remainder)
        x, lastx = lastx - quotient * x, x
        y, lasty = lasty - quotient * y, y
    return lastremainder, lastx * (-1 if aa < 0 else 1), lasty * (-1 if bb < 0
                                                                  else 1)


def modinv(a, m):
    g, x, y = extended_gcd(a, m)
    if g != 1:
        raise ValueError
    return x % m


n1 = 924506488821656685683910901697171383575761384058997452768161613244316449994435541406042874502024337501621283644549497446327156438552952982774526792356194523541927862677535193330297876054850415513120023262998063090052673978470859715791539316871
n2 = 88950937117255391223977435698486265468789676087383749025900580476857958577458361251855358598960638495873663408330100969812759959637583297211068274793121379054729169786199319454344007481804946263873110263761707375758247409
n3 = 46120424124283407631877739918717497745499448442081604908717069311339764302716539899549382470988469546914660420190473379187397425725302899111432304753418508501904277711772373006543099077921097373552317823052570252978144835744949941108416471431004677
c1 = 388825822870813587493154615238012547494666151428446904627095554917874019374474234421038941934804209410745453928513883448152675699305596595130706561989245940306390625802518940063853046813376063232724848204735684760377804361178651844505881089386
c2 = 4132099145786478580573701281040504422332184017792293421890701268012883566853254627860193724809808999005233349057847375798626123207766954266507411969802654226242300965967704040276250440511648395550180630597000941240639594
c3 = 43690392479478733802175619151519523453201200942800536494806512990350504964044289998495399805335942227586694852363272883331080188161308470522306485983861114557449204887644890409995598852299488628159224012730372865280540944897915435604154376354144428
e = 3
N = n1 * n2 * n3
pt_cubed = crt([n3, n1, n2], [c3, c1, c2])[0]
pt = cbrt(pt_cubed)
flag = str(long_to_bytes(pt)[::-1])
flag = flag[2:-1]
print(flag)
Пример #14
0
def test_minimal_polynomial():
    assert minimal_polynomial(-7, x) == x + 7
    assert minimal_polynomial(-1, x) == x + 1
    assert minimal_polynomial(0, x) == x
    assert minimal_polynomial(1, x) == x - 1
    assert minimal_polynomial(7, x) == x - 7

    assert minimal_polynomial(sqrt(2), x) == x**2 - 2
    assert minimal_polynomial(sqrt(5), x) == x**2 - 5
    assert minimal_polynomial(sqrt(6), x) == x**2 - 6

    assert minimal_polynomial(2 * sqrt(2), x) == x**2 - 8
    assert minimal_polynomial(3 * sqrt(5), x) == x**2 - 45
    assert minimal_polynomial(4 * sqrt(6), x) == x**2 - 96

    assert minimal_polynomial(2 * sqrt(2) + 3, x) == x**2 - 6 * x + 1
    assert minimal_polynomial(3 * sqrt(5) + 6, x) == x**2 - 12 * x - 9
    assert minimal_polynomial(4 * sqrt(6) + 7, x) == x**2 - 14 * x - 47

    assert minimal_polynomial(2 * sqrt(2) - 3, x) == x**2 + 6 * x + 1
    assert minimal_polynomial(3 * sqrt(5) - 6, x) == x**2 + 12 * x - 9
    assert minimal_polynomial(4 * sqrt(6) - 7, x) == x**2 + 14 * x - 47

    assert minimal_polynomial(sqrt(1 + sqrt(6)), x) == x**4 - 2 * x**2 - 5
    assert minimal_polynomial(sqrt(I + sqrt(6)), x) == x**8 - 10 * x**4 + 49

    assert minimal_polynomial(2 * I + sqrt(2 + I),
                              x) == x**4 + 4 * x**2 + 8 * x + 37

    assert minimal_polynomial(sqrt(2) + sqrt(3), x) == x**4 - 10 * x**2 + 1
    assert minimal_polynomial(sqrt(2) + sqrt(3) + sqrt(6),
                              x) == x**4 - 22 * x**2 - 48 * x - 23

    a = 1 - 9 * sqrt(2) + 7 * sqrt(3)

    assert minimal_polynomial(
        1 / a, x) == 392 * x**4 - 1232 * x**3 + 612 * x**2 + 4 * x - 1
    assert minimal_polynomial(
        1 / sqrt(a), x) == 392 * x**8 - 1232 * x**6 + 612 * x**4 + 4 * x**2 - 1

    raises(NotAlgebraic, lambda: minimal_polynomial(oo, x))
    raises(NotAlgebraic, lambda: minimal_polynomial(2**y, x))
    raises(NotAlgebraic, lambda: minimal_polynomial(sin(1), x))

    assert minimal_polynomial(sqrt(2)).dummy_eq(x**2 - 2)
    assert minimal_polynomial(sqrt(2), x) == x**2 - 2

    assert minimal_polynomial(sqrt(2), polys=True) == Poly(x**2 - 2)
    assert minimal_polynomial(sqrt(2), x, polys=True) == Poly(x**2 - 2,
                                                              domain='QQ')
    assert minimal_polynomial(sqrt(2), x, polys=True,
                              compose=False) == Poly(x**2 - 2, domain='QQ')

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))

    assert minimal_polynomial(a, x) == x**2 - 2
    assert minimal_polynomial(b, x) == x**2 - 3

    assert minimal_polynomial(a, x, polys=True) == Poly(x**2 - 2, domain='QQ')
    assert minimal_polynomial(b, x, polys=True) == Poly(x**2 - 3, domain='QQ')

    assert minimal_polynomial(sqrt(a / 2 + 17),
                              x) == 2 * x**4 - 68 * x**2 + 577
    assert minimal_polynomial(sqrt(b / 2 + 17),
                              x) == 4 * x**4 - 136 * x**2 + 1153

    a, b = sqrt(2) / 3 + 7, AlgebraicNumber(sqrt(2) / 3 + 7)

    f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \
        31608*x**2 - 189648*x + 141358

    assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)), x) == f
    assert minimal_polynomial(sqrt(b) + sqrt(sqrt(b)), x) == f

    assert minimal_polynomial(a**Q(3, 2),
                              x) == 729 * x**4 - 506898 * x**2 + 84604519

    # issue 5994
    eq = S('''
        -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)))''')
    assert minimal_polynomial(eq, x) == 8000 * x**2 - 1

    ex = (sqrt(5) * sqrt(I) / (5 * sqrt(1 + 125 * I)) + 25 * sqrt(5) /
          (I**Q(5, 2) * (1 + 125 * I)**Q(3, 2)) + 3125 * sqrt(5) /
          (I**Q(11, 2) * (1 + 125 * I)**Q(3, 2)) + 5 * I * sqrt(1 - I / 125))
    mp = minimal_polynomial(ex, x)
    assert mp == 25 * x**4 + 5000 * x**2 + 250016

    ex = 1 + sqrt(2) + sqrt(3)
    mp = minimal_polynomial(ex, x)
    assert mp == x**4 - 4 * x**3 - 4 * x**2 + 16 * x - 8

    ex = 1 / (1 + sqrt(2) + sqrt(3))
    mp = minimal_polynomial(ex, x)
    assert mp == 8 * x**4 - 16 * x**3 + 4 * x**2 + 4 * x - 1

    p = (expand((1 + sqrt(2) - 2 * sqrt(3) + sqrt(7))**3))**Rational(1, 3)
    mp = minimal_polynomial(p, x)
    assert mp == x**8 - 8 * x**7 - 56 * x**6 + 448 * x**5 + 480 * x**4 - 5056 * x**3 + 1984 * x**2 + 7424 * x - 3008
    p = expand((1 + sqrt(2) - 2 * sqrt(3) + sqrt(7))**3)
    mp = minimal_polynomial(p, x)
    assert mp == x**8 - 512 * x**7 - 118208 * x**6 + 31131136 * x**5 + 647362560 * x**4 - 56026611712 * x**3 + 116994310144 * x**2 + 404854931456 * x - 27216576512

    assert minimal_polynomial(S("-sqrt(5)/2 - 1/2 + (-sqrt(5)/2 - 1/2)**2"),
                              x) == x - 1
    a = 1 + sqrt(2)
    assert minimal_polynomial((a * sqrt(2) + a)**3, x) == x**2 - 198 * x + 1

    p = 1 / (1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(
        p, x, compose=False) == 8 * x**4 - 16 * x**3 + 4 * x**2 + 4 * x - 1

    p = 2 / (1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(
        p, x, compose=False) == x**4 - 4 * x**3 + 2 * x**2 + 4 * x - 2

    assert minimal_polynomial(1 + sqrt(2) * I, x,
                              compose=False) == x**2 - 2 * x + 3
    assert minimal_polynomial(1 / (1 + sqrt(2)) + 1, x,
                              compose=False) == x**2 - 2
    assert minimal_polynomial(sqrt(2) * I + I * (1 + sqrt(2)),
                              x,
                              compose=False) == x**4 + 18 * x**2 + 49

    # minimal polynomial of I
    assert minimal_polynomial(I, x, domain=QQ.algebraic_field(I)) == x - I
    K = QQ.algebraic_field(I * (sqrt(2) + 1))
    assert minimal_polynomial(I, x, domain=K) == x - I
    assert minimal_polynomial(I, x, domain=QQ) == x**2 + 1
    assert minimal_polynomial(I, x, domain='QQ(y)') == x**2 + 1

    #issue 11553
    assert minimal_polynomial(GoldenRatio, x) == x**2 - x - 1
    assert minimal_polynomial(TribonacciConstant + 3,
                              x) == x**3 - 10 * x**2 + 32 * x - 34
    assert minimal_polynomial(GoldenRatio, x, domain=QQ.algebraic_field(sqrt(5))) == \
            2*x - sqrt(5) - 1
    assert minimal_polynomial(TribonacciConstant, x, domain=QQ.algebraic_field(cbrt(19 - 3*sqrt(33)))) == \
    48*x - 19*(19 - 3*sqrt(33))**Rational(2, 3) - 3*sqrt(33)*(19 - 3*sqrt(33))**Rational(2, 3) \
    - 16*(19 - 3*sqrt(33))**Rational(1, 3) - 16

    # AlgebraicNumber with an alias.
    # Wester H24
    phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
    assert minimal_polynomial(phi, x) == x**2 - x - 1