Пример #1
0
    def distance(self, o):
        """Distance beteen the plane and another geometric entity.

        Parameters
        ==========

        Point3D, LinearEntity3D, Plane.

        Returns
        =======

        distance

        Notes
        =====

        This method accepts only 3D entities as it's parameter, but if you want
        to calculate the distance between a 2D entity and a plane you should
        first convert to a 3D entity by projecting onto a desired plane and
        then proceed to calculate the distance.

        Examples
        ========

        >>> from sympy import Point, Point3D, Line, Line3D, Plane
        >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
        >>> b = Point3D(1, 2, 3)
        >>> a.distance(b)
        sqrt(3)
        >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
        >>> a.distance(c)
        0

        """
        from sympy.geometry.line3d import LinearEntity3D
        x, y, z = map(Dummy, 'xyz')
        if self.intersection(o) != []:
            return S.Zero

        if isinstance(o, Point3D):
           x, y, z = map(Dummy, 'xyz')
           k = self.equation(x, y, z)
           a, b, c = [k.coeff(i) for i in (x, y, z)]
           d = k.xreplace({x: o.args[0], y: o.args[1], z: o.args[2]})
           t = abs(d/sqrt(a**2 + b**2 + c**2))
           return t
        if isinstance(o, LinearEntity3D):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
        if isinstance(o, Plane):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
Пример #2
0
    def distance(self, o):
        """Distance beteen the plane and another geometric entity.

        Parameters
        ==========

        Point3D, LinearEntity3D, Plane.

        Returns
        =======

        distance

        Notes
        =====

        This method accepts only 3D entities as it's parameter, but if you want
        to calculate the distance between a 2D entity and a plane you should
        first convert to a 3D entity by projecting onto a desired plane and
        then proceed to calculate the distance.

        Examples
        ========

        >>> from sympy import Point, Point3D, Line, Line3D, Plane
        >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
        >>> b = Point3D(1, 2, 3)
        >>> a.distance(b)
        sqrt(3)
        >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
        >>> a.distance(c)
        0

        """
        from sympy.geometry.line3d import LinearEntity3D
        x, y, z = map(Dummy, 'xyz')
        if self.intersection(o) != []:
            return S.Zero

        if isinstance(o, Point3D):
            x, y, z = map(Dummy, 'xyz')
            k = self.equation(x, y, z)
            a, b, c = [k.coeff(i) for i in (x, y, z)]
            d = k.xreplace({x: o.args[0], y: o.args[1], z: o.args[2]})
            t = abs(d / sqrt(a**2 + b**2 + c**2))
            return t
        if isinstance(o, LinearEntity3D):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
        if isinstance(o, Plane):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
Пример #3
0
    def arbitrary_point(self, u=None, v=None):
        """ Returns an arbitrary point on the Plane. If given two
        parameters, the point ranges over the entire plane. If given 1
        or no parameters, returns a point with one parameter which,
        when varying from 0 to 2*pi, moves the point in a circle of
        radius 1 about p1 of the Plane.

        Examples
        ========

        >>> from sympy.geometry import Plane, Ray
        >>> from sympy.abc import u, v, t, r
        >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
        >>> p.arbitrary_point(u, v)
        Point3D(1, u + 1, v + 1)
        >>> p.arbitrary_point(t)
        Point3D(1, cos(t) + 1, sin(t) + 1)

        While arbitrary values of u and v can move the point anywhere in
        the plane, the single-parameter point can be used to construct a
        ray whose arbitrary point can be located at angle t and radius
        r from p.p1:

        >>> Ray(p.p1, _).arbitrary_point(r)
        Point3D(1, r*cos(t) + 1, r*sin(t) + 1)

        Returns
        =======

        Point3D

        """
        circle = v is None
        if circle:
            u = _symbol(u or 't', real=True)
        else:
            u = _symbol(u or 'u', real=True)
            v = _symbol(v or 'v', real=True)
        x, y, z = self.normal_vector
        a, b, c = self.p1.args
        # x1, y1, z1 is a nonzero vector parallel to the plane
        if x.is_zero and y.is_zero:
            x1, y1, z1 = S.One, S.Zero, S.Zero
        else:
            x1, y1, z1 = -y, x, S.Zero
        # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
        x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
        if circle:
            x1, y1, z1 = (w / sqrt(x1**2 + y1**2 + z1**2)
                          for w in (x1, y1, z1))
            x2, y2, z2 = (w / sqrt(x2**2 + y2**2 + z2**2)
                          for w in (x2, y2, z2))
            p = Point3D(a + x1*cos(u) + x2*sin(u), \
                        b + y1*cos(u) + y2*sin(u), \
                        c + z1*cos(u) + z2*sin(u))
        else:
            p = Point3D(a + x1 * u + x2 * v, b + y1 * u + y2 * v,
                        c + z1 * u + z2 * v)
        return p
Пример #4
0
    def arbitrary_point(self, u=None, v=None):
        """ Returns an arbitrary point on the Plane. If given two
        parameters, the point ranges over the entire plane. If given 1
        or no parameters, returns a point with one parameter which,
        when varying from 0 to 2*pi, moves the point in a circle of
        radius 1 about p1 of the Plane.

        Examples
        ========

        >>> from sympy.geometry import Plane, Ray
        >>> from sympy.abc import u, v, t, r
        >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
        >>> p.arbitrary_point(u, v)
        Point3D(1, u + 1, v + 1)
        >>> p.arbitrary_point(t)
        Point3D(1, cos(t) + 1, sin(t) + 1)

        While arbitrary values of u and v can move the point anywhere in
        the plane, the single-parameter point can be used to construct a
        ray whose arbitrary point can be located at angle t and radius
        r from p.p1:

        >>> Ray(p.p1, _).arbitrary_point(r)
        Point3D(1, r*cos(t) + 1, r*sin(t) + 1)

        Returns
        =======

        Point3D

        """
        circle = v is None
        if circle:
            u = _symbol(u or 't', real=True)
        else:
            u = _symbol(u or 'u', real=True)
            v = _symbol(v or 'v', real=True)
        x, y, z = self.normal_vector
        a, b, c = self.p1.args
        # x1, y1, z1 is a nonzero vector parallel to the plane
        if x.is_zero and y.is_zero:
            x1, y1, z1 = S.One, S.Zero, S.Zero
        else:
            x1, y1, z1 = -y, x, S.Zero
        # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
        x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
        if circle:
            x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
            x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
            p = Point3D(a + x1*cos(u) + x2*sin(u), \
                        b + y1*cos(u) + y2*sin(u), \
                        c + z1*cos(u) + z2*sin(u))
        else:
            p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
        return p
Пример #5
0
    def random_point(self, seed=None):
        """ Returns a random point on the Plane.

        Returns
        =======

        Point3D

        """
        x, y, z = symbols("x, y, z")
        a = self.equation(x, y, z)
        from sympy import Rational
        import random
        if seed is not None:
            rng = random.Random(seed)
        else:
            rng = random
        for i in range(10):
            c = 2*Rational(rng.random()) - 1
            s = sqrt(1 - c**2)
            a = solve(a.subs([(y, c), (z, s)]))
            if a is []:
                d = Point3D(0, c, s)
            else:
                d = Point3D(a[0], c, s)
            if d in self:
                return d
        raise GeometryError(
            'Having problems generating a point in the plane')
Пример #6
0
    def distance(self, o):
        """
        Finds the shortest distance between a line and a point.

        Raises
        ======

        NotImplementedError is raised if o is not a Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> s = Line(p1, p2)
        >>> s.distance(Point(-1, 1))
        sqrt(2)
        >>> s.distance((-1, 2))
        3*sqrt(2)/2
        """
        if not isinstance(o, Point):
            if is_sequence(o):
                o = Point(o)
        a, b, c = self.coefficients
        if 0 in (a, b):
            return self.perpendicular_segment(o).length
        m = self.slope
        x = o.x
        y = m*x - c/b
        return abs(factor_terms(o.y - y))/sqrt(1 + m**2)
Пример #7
0
    def distance(self, o):
        """
        Finds the shortest distance between a line and a point.

        Raises
        ======

        NotImplementedError is raised if o is not a Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> s = Line(p1, p2)
        >>> s.distance(Point(-1, 1))
        sqrt(2)
        """
        if not isinstance(o, Point):
            raise NotImplementedError
        a, b, c = self.coefficients
        if 0 in (a, b):
            return self.perpendicular_segment(o).length
        m = self.slope
        x = o.x
        y = m * x - c / b
        return abs(factor_terms(o.y - y)) / sqrt(1 + m**2)
Пример #8
0
    def random_point(self, seed=None):
        """ Returns a random point on the Plane.

        Returns
        =======

        Point3D

        """
        x, y, z = symbols("x, y, z")
        a = self.equation(x, y, z)
        from sympy import Rational
        import random
        if seed is not None:
            rng = random.Random(seed)
        else:
            rng = random
        for i in range(10):
            c = 2 * Rational(rng.random()) - 1
            s = sqrt(1 - c**2)
            a = solve(a.subs([(y, c), (z, s)]))
            if a is []:
                d = Point3D(0, c, s)
            else:
                d = Point3D(a[0], c, s)
            if d in self:
                return d
        raise GeometryError('Having problems generating a point in the plane')
Пример #9
0
    def angle_between(self, o):
        """Angle between the plane and other geometric entity.

        Parameters
        ==========

        LinearEntity3D, Plane.

        Returns
        =======

        angle : angle in radians

        Notes
        =====

        This method accepts only 3D entities as it's parameter, but if you want
        to calculate the angle between a 2D entity and a plane you should
        first convert to a 3D entity by projecting onto a desired plane and
        then proceed to calculate the angle.

        Examples
        ========

        >>> from sympy import Point3D, Line3D, Plane
        >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
        >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
        >>> a.angle_between(b)
        -asin(sqrt(21)/6)

        """
        from sympy.geometry.line import LinearEntity3D

        if isinstance(o, LinearEntity3D):
            a = Matrix(self.normal_vector)
            b = Matrix(o.direction_ratio)
            c = a.dot(b)
            d = sqrt(sum([i**2 for i in self.normal_vector]))
            e = sqrt(sum([i**2 for i in o.direction_ratio]))
            return asin(c / (d * e))
        if isinstance(o, Plane):
            a = Matrix(self.normal_vector)
            b = Matrix(o.normal_vector)
            c = a.dot(b)
            d = sqrt(sum([i**2 for i in self.normal_vector]))
            e = sqrt(sum([i**2 for i in o.normal_vector]))
            return acos(c / (d * e))
Пример #10
0
    def angle_between(self, o):
        """Angle between the plane and other geometric entity.

        Parameters
        ==========

        LinearEntity3D, Plane.

        Returns
        =======

        angle : angle in radians

        Notes
        =====

        This method accepts only 3D entities as it's parameter, but if you want
        to calculate the angle between a 2D entity and a plane you should
        first convert to a 3D entity by projecting onto a desired plane and
        then proceed to calculate the angle.

        Examples
        ========

        >>> from sympy import Point3D, Line3D, Plane
        >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
        >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
        >>> a.angle_between(b)
        -asin(sqrt(21)/6)

        """
        from sympy.geometry.line3d import LinearEntity3D

        if isinstance(o, LinearEntity3D):
            a = Matrix(self.normal_vector)
            b = Matrix(o.direction_ratio)
            c = a.dot(b)
            d = sqrt(sum([i ** 2 for i in self.normal_vector]))
            e = sqrt(sum([i ** 2 for i in o.direction_ratio]))
            return asin(c / (d * e))
        if isinstance(o, Plane):
            a = Matrix(self.normal_vector)
            b = Matrix(o.normal_vector)
            c = a.dot(b)
            d = sqrt(sum([i ** 2 for i in self.normal_vector]))
            e = sqrt(sum([i ** 2 for i in o.normal_vector]))
            return acos(c / (d * e))
Пример #11
0
    def arbitrary_point(self, u=None, v=None):
        """ Returns an arbitrary point on the Plane. If given two parameters,
        the point ranges over the entire plane. If given one or no parameters,
        returns a point with one parameter, varying which from 0 to 2*pi will
        move the point in a circle of radius 1 about p1 of the Plane.

        Examples
        ========

        >>> from sympy.geometry.plane import Plane
        >>> from sympy.abc import u, v, t
        >>> p = Plane((3, 1, 4), (2, 0, 1), (-1, -2, -2))
        >>> p.arbitrary_point(u, v)
        Point3D(-6*u - 3*v + 3, -3*u + 6*v + 1, 45*v + 4)
        >>> p.arbitrary_point(t)
        Point3D(-sqrt(230)*sin(t)/230 - 2*sqrt(5)*cos(t)/5 + 3, sqrt(230)*sin(t)/115 - sqrt(5)*cos(t)/5 + 1, 3*sqrt(230)*sin(t)/46 + 4)

        Returns
        =======

        Point3D

        """
        circle = v is None
        u = u or Dummy('u', real=True)
        v = v or Dummy('v', real=True)
        x, y, z = self.normal_vector
        a, b, c = self.p1.args
        # x1, y1, z1 is a nonzero vector parallel to the plane
        if x.is_zero and y.is_zero:
            x1, y1, z1 = S.One, S.Zero, S.Zero
        else:
            x1, y1, z1 = -y, x, S.Zero
        # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
        x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
        if circle:
            x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
            x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
            p = Point3D(a + x1*cos(u) + x2*sin(u), \
                        b + y1*cos(u) + y2*sin(u), \
                        c + z1*cos(u) + z2*sin(u))
        else:
            p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
        return p
Пример #12
0
    def distance(self, o):
        """Distance beteen the plane and another geometric entity.

        Parameters
        ==========

        Point3D, LinearEntity3D, Plane.

        Returns
        =======

        distance

        Notes
        =====

        This method accepts only 3D entities as it's parameter, but if you want
        to calculate the distance between a 2D entity and a plane you should
        first convert to a 3D entity by projecting onto a desired plane and
        then proceed to calculate the distance.

        Examples
        ========

        >>> from sympy import Point, Point3D, Line, Line3D, Plane
        >>> a = Plane(Point3D(1, 1, 1), normal_vector=[1, 1, 1])
        >>> b = Point3D(1, 2, 3)
        >>> a.distance(b)
        sqrt(3)
        >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
        >>> a.distance(c)
        0

        """
        from sympy.geometry.line3d import LinearEntity3D
        x, y, z = symbols("x y z")
        if self.intersection(o) != []:
            return S.Zero

        if isinstance(o, Point3D):
            k = self.equation(x, y, z)
            const = [i for i in k.args if i.is_constant() is True]
            a, b, c = k.coeff(x), k.coeff(y), k.coeff(z)
            if const != []:
                d = a*o.x + b*o.y + c*o.z + const.pop()
                t = sqrt(a**2 + b**2 + c**2)
                return abs(d / t)
            else:
                d = a*o.x + b*o.y + c*o.z
                t = sqrt(a**2 + b**2 + c**2)
                return abs(d / t)
        if isinstance(o, LinearEntity3D):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
        if isinstance(o, Plane):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
def _roots():
    global _ROOT2, _ROOT3, _invROOT3
    _ROOT2, _ROOT3 = sqrt(2), sqrt(3)
    _invROOT3 = 1 / _ROOT3
Пример #14
0
    def distance(self, o):
        """Distance beteen the plane and another geometric entity.

        Parameters
        ==========

        Point3D, LinearEntity3D, Plane.

        Returns
        =======

        distance

        Notes
        =====

        This method accepts only 3D entities as it's parameter, but if you want
        to calculate the distance between a 2D entity and a plane you should
        first convert to a 3D entity by projecting onto a desired plane and
        then proceed to calculate the distance.

        Examples
        ========

        >>> from sympy import Point, Point3D, Line, Line3D, Plane
        >>> a = Plane(Point3D(1, 1, 1), normal_vector=[1, 1, 1])
        >>> b = Point3D(1, 2, 3)
        >>> a.distance(b)
        sqrt(3)
        >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
        >>> a.distance(c)
        0

        """
        from sympy.geometry.line3d import LinearEntity3D
        x, y, z = symbols("x y z")
        if self.intersection(o) != []:
            return S.Zero

        if isinstance(o, Point3D):
            k = self.equation(x, y, z)
            const = [i for i in k.args if i.is_constant() is True]
            a, b, c = k.coeff(x), k.coeff(y), k.coeff(z)
            if const != []:
                d = a * o.x + b * o.y + c * o.z + const.pop()
                t = sqrt(a**2 + b**2 + c**2)
                return abs(d / t)
            else:
                d = a * o.x + b * o.y + c * o.z
                t = sqrt(a**2 + b**2 + c**2)
                return abs(d / t)
        if isinstance(o, LinearEntity3D):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)
        if isinstance(o, Plane):
            a, b = o.p1, self.p1
            c = Matrix(a.direction_ratio(b))
            d = Matrix(self.normal_vector)
            e = c.dot(d)
            f = sqrt(sum([i**2 for i in self.normal_vector]))
            return abs(e / f)