Пример #1
0
def test_manualintegrate_special():
    f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
    assert_is_integral_of(f, F)
    f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
    assert_is_integral_of(f, F)
    f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
    assert_is_integral_of(f, F)
    f, F = exp(2*x)/x, Ei(2*x)
    assert_is_integral_of(f, F)
    f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
    assert_is_integral_of(f, F)
    f = sin(x**2 + 4*x + 1)
    F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
        cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
    assert_is_integral_of(f, F)
    f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
    assert_is_integral_of(f, F)
    f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
    assert_is_integral_of(f, F)
    f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
    assert_is_integral_of(f, F)
    f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
    assert_is_integral_of(f, F)
    f, F = cosh(x/2)/x, Chi(x/2)
    assert_is_integral_of(f, F)
    f, F = cos(x**2)/x, Ci(x**2)/2
    assert_is_integral_of(f, F)
    f, F = 1/log(2*x + 1), li(2*x + 1)/2
    assert_is_integral_of(f, F)
    f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
    assert_is_integral_of(f, F)
    f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
    assert_is_integral_of(f, F)
    f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
    assert_is_integral_of(f, F)
Пример #2
0
def test_branch_bug():
    assert hyperexpand(hyper((Rational(-1, 3), S.Half), (Rational(2, 3), Rational(3, 2)), -z)) == \
        -z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
        2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(
                       Rational(2, 3), z)/z**S('2/3'))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
Пример #3
0
def test_issue_17450():
    assert (erf(cosh(1)**7)**I).is_real is None
    assert (erf(cosh(1)**7)**I).is_imaginary == False
    assert (Pow(exp(1 + sqrt(2)),
                ((1 - sqrt(2)) * I * pi), evaluate=False)).is_real is None
    assert ((-10)**(10 * I * pi / 3)).is_real == False
    assert ((-5)**(4 * I * pi)).is_real == False
Пример #4
0
def test_to_expr():
    x = symbols('x')
    R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
    q = exp(x)
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
    q = cos(x)
    assert p == q
    p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
    q = cosh(x)
    assert p == q
    p = HolonomicFunction(2 + (4*x - 1)*Dx + \
        (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
    q = 1 / (x**2 - 2 * x + 1)
    assert p == q
    p = expr_to_holonomic(sin(x)**2 / x).integrate((x, 0, x)).to_expr()
    q = (sin(x)**2 / x).integrate((x, 0, x))
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1 + x**2)).to_expr()
    q = C_2 * log(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(log(1 + x**2)).diff().to_expr()
    q = C_0 * x / (x**2 + 1)
    assert p == q
    p = expr_to_holonomic(erf(x) + x).to_expr()
    q = 3 * C_3 * x - 3 * sqrt(pi) * C_3 * erf(x) / 2 + x + 2 * x / sqrt(pi)
    assert p == q
    p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
    assert p == sqrt(x)
    assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
    p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
    assert p == sqrt(1 + x**2)
    p = expr_to_holonomic((2 * x**2 + 1)**Rational(2, 3)).to_expr()
    assert p == (2 * x**2 + 1)**Rational(2, 3)
    p = expr_to_holonomic(sqrt(-x**2 + 2 * x)).to_expr()
    assert p == sqrt(x) * sqrt(-x + 2)
    p = expr_to_holonomic((-2 * x**3 + 7 * x)**Rational(2, 3)).to_expr()
    q = x**Rational(2, 3) * (-2 * x**2 + 7)**Rational(2, 3)
    assert p == q
    p = from_hyper(hyper((-2, -3), (S.Half, ), x))
    s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
    D_0 = Symbol('D_0')
    C_0 = Symbol('C_0')
    assert (p.to_expr().subs({C_0: 1, D_0: 0}) - s).simplify() == 0
    p.y0 = {0: [1], S.Half: [0]}
    assert p.to_expr() == s
    assert expr_to_holonomic(x**5).to_expr() == x**5
    assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
        2*x**3-3*x**2
    a = symbols("a")
    p = (expr_to_holonomic(1.4 * x) * expr_to_holonomic(a * x, x)).to_expr()
    q = 1.4 * a * x**2
    assert p == q
    p = (expr_to_holonomic(1.4 * x) + expr_to_holonomic(a * x, x)).to_expr()
    q = x * (a + 1.4)
    assert p == q
    p = (expr_to_holonomic(1.4 * x) + expr_to_holonomic(x)).to_expr()
    assert p == 2.4 * x
Пример #5
0
    def eval(cls, a, x):
        # For lack of a better place, we use this one to extract branching
        # information. The following can be
        # found in the literature (c/f references given above), albeit scattered:
        # 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
        # 2) For fixed positive integers s, lowergamma(s, x) is an entire
        #    function of x.
        # 3) For fixed non-positive integers s,
        #    lowergamma(s, exp(I*2*pi*n)*x) =
        #              2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
        #    (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
        # 4) For fixed non-integral s,
        #    lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
        #    where lowergamma_unbranched(s, x) is an entire function (in fact
        #    of both s and x), i.e.
        #    lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
        from sympy import unpolarify, I
        if x is S.Zero:
            return S.Zero
        nx, n = x.extract_branch_factor()
        if a.is_integer and a.is_positive:
            nx = unpolarify(x)
            if nx != x:
                return lowergamma(a, nx)
        elif a.is_integer and a.is_nonpositive:
            if n != 0:
                return 2 * pi * I * n * (-1)**(
                    -a) / factorial(-a) + lowergamma(a, nx)
        elif n != 0:
            return exp(2 * pi * I * n * a) * lowergamma(a, nx)

        # Special values.
        if a.is_Number:
            if a is S.One:
                return S.One - exp(-x)
            elif a is S.Half:
                return sqrt(pi) * erf(sqrt(x))
            elif a.is_Integer or (2 * a).is_Integer:
                b = a - 1
                if b.is_positive:
                    if a.is_integer:
                        return factorial(b) - exp(-x) * factorial(b) * Add(
                            *[x**k / factorial(k) for k in range(a)])
                    else:
                        return gamma(a) * (
                            lowergamma(S.Half, x) / sqrt(pi) - exp(-x) * Add(*[
                                x**(k - S.Half) / gamma(S.Half + k)
                                for k in range(1, a + S.Half)
                            ]))

                if not a.is_Integer:
                    return (-1)**(S.Half - a) * pi * erf(
                        sqrt(x)) / gamma(1 - a) + exp(-x) * Add(*[
                            x**(k + a - 1) * gamma(a) / gamma(a + k)
                            for k in range(1,
                                           Rational(3, 2) - a)
                        ])

        if x.is_zero:
            return S.Zero
Пример #6
0
def test_inverse_laplace_transform():
    from sympy.core.exprtools import factor_terms
    from sympy.functions.special.delta_functions import DiracDelta
    from sympy.simplify.simplify import simplify
    ILT = inverse_laplace_transform
    a, b, c, = symbols('a b c', positive=True)
    t = symbols('t')

    def simp_hyp(expr):
        return factor_terms(expand_mul(expr)).rewrite(sin)

    assert ILT(1, s, t) == DiracDelta(t)
    assert ILT(1/s, s, t) == Heaviside(t)
    assert ILT(a/(a + s), s, t) == a*exp(-a*t)*Heaviside(t)
    assert ILT(s/(a + s), s, t) == -a*exp(-a*t)*Heaviside(t) + DiracDelta(t)
    assert ILT((a + s)**(-2), s, t) == t*exp(-a*t)*Heaviside(t)
    assert ILT((a + s)**(-5), s, t) == t**4*exp(-a*t)*Heaviside(t)/24
    assert ILT(a/(a**2 + s**2), s, t) == sin(a*t)*Heaviside(t)
    assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t)
    assert ILT(b/(b**2 + (a + s)**2), s, t) == exp(-a*t)*sin(b*t)*Heaviside(t)
    assert ILT(b*s/(b**2 + (a + s)**2), s, t) +\
        (a*sin(b*t) - b*cos(b*t))*exp(-a*t)*Heaviside(t) == 0
    assert ILT(exp(-a*s)/s, s, t) == Heaviside(-a + t)
    assert ILT(exp(-a*s)/(b + s), s, t) == exp(b*(a - t))*Heaviside(-a + t)
    assert ILT((b + s)/(a**2 + (b + s)**2), s, t) == \
        exp(-b*t)*cos(a*t)*Heaviside(t)
    assert ILT(exp(-a*s)/s**b, s, t) == \
        (-a + t)**(b - 1)*Heaviside(-a + t)/gamma(b)
    assert ILT(exp(-a*s)/sqrt(s**2 + 1), s, t) == \
        Heaviside(-a + t)*besselj(0, a - t)
    assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
    assert ILT(1/(s**2*(s**2 + 1)), s, t) == (t - sin(t))*Heaviside(t)
    assert ILT(s**2/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t)
    assert ILT(1 - 1/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t)
    assert ILT(1/s**2, s, t) == t*Heaviside(t)
    assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24
    assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t)
    assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t)
    # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess
    # TODO should this simplify further?
    assert ILT(exp(-a*s)/s**b, s, t) == \
        (t - a)**(b - 1)*Heaviside(t - a)/gamma(b)
    assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \
        Heaviside(t - a)*besselj(0, a - t)  # note: besselj(0, x) is even
    # XXX ILT turns these branch factor into trig functions ...
    assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2),
                    s, t).rewrite(exp)) == \
        Heaviside(t)*besseli(b, a*t)
    assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2),
               s, t).rewrite(exp) == \
        Heaviside(t)*besselj(b, a*t)

    assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
    # TODO can we make erf(t) work?

    assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t)

    assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\
        Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
Пример #7
0
def test_erf_series():
    assert erf(x).series(x, 0, 7) == 2*x/sqrt(pi) - \
        2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7)

    assert erf(x).series(x, oo) == \
        -exp(-x**2)*(3/(4*x**5) - 1/(2*x**3) + 1/x + O(x**(-6), (x, oo)))/sqrt(pi) + 1
    assert erf(x**2).series(x, oo, n=8) == \
        (-1/(2*x**6) + x**(-2) + O(x**(-8), (x, oo)))*exp(-x**4)/sqrt(pi)*-1 + 1
    assert erf(sqrt(x)).series(x, oo, n=3) == (sqrt(1/x) - (1/x)**(S(3)/2)/2\
        + 3*(1/x)**(S(5)/2)/4 + O(x**(-3), (x, oo)))*exp(-x)/sqrt(pi)*-1 + 1
Пример #8
0
def test_branch_bug():
    from sympy.functions.special.gamma_functions import lowergamma
    from sympy.simplify.powsimp import powdenest
    # TODO gammasimp cannot prove that the factor is unity
    assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x),
                     polar=True) == 2 * erf(x**3) * gamma(Rational(
                         2, 3)) / 3 / gamma(Rational(5, 3))
    assert integrate(erf(x**3), x, meijerg=True) == \
        2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \
        - 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3)))
Пример #9
0
def test__erfs():
    assert _erfs(z).diff(z) == -2/sqrt(S.Pi) + 2*z*_erfs(z)

    assert _erfs(1/z).series(z) == \
        z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6)

    assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == erf(z).diff(z)
    assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
    raises(ArgumentIndexError, lambda: _erfs(z).fdiff(2))
Пример #10
0
def test_erfi():
    assert erfi(nan) is nan

    assert erfi(oo) is S.Infinity
    assert erfi(-oo) is S.NegativeInfinity

    assert erfi(0) is S.Zero

    assert erfi(I*oo) == I
    assert erfi(-I*oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I*erfinv(x)) == I*x
    assert erfi(I*erfcinv(x)) == I*(1 - x)
    assert erfi(I*erf2inv(0, x)) == I*x
    assert erfi(I*erf2inv(0, x, evaluate=False)) == I*x # To cover code in erfi

    assert erfi(I).is_real is False
    assert erfi(0, evaluate=False).is_real
    assert erfi(0, evaluate=False).is_zero

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(x).as_leading_term(x) == 2*x/sqrt(pi)
    assert erfi(x*y).as_leading_term(y) == 2*x*y/sqrt(pi)
    assert (erfi(x*y)/erfi(y)).as_leading_term(y) == x
    assert erfi(1/x).as_leading_term(x) == erfi(1/x)

    assert erfi(z).rewrite('erf') == -I*erf(I*z)
    assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
        I*fresnels(z*(1 + I)/sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
        I*fresnels(z*(1 + I)/sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], z**2)/sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2)/sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(S.Half,
        -z**2)/sqrt(S.Pi) - S.One))
    assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi)
    assert erfi(z).rewrite('tractable') == -I*(-_erfs(I*z)*exp(z**2) + 1)
    assert expand_func(erfi(I*z)) == I*erf(z)

    assert erfi(x).as_real_imag() == \
        (erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2,
         -I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2)
    assert erfi(x).as_real_imag(deep=False) == \
        (erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2,
         -I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2)

    assert erfi(w).as_real_imag() == (erfi(w), 0)
    assert erfi(w).as_real_imag(deep=False) == (erfi(w), 0)

    raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
Пример #11
0
def test_erfc():
    assert erfc(nan) is nan

    assert erfc(oo) is S.Zero
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I*oo) == -oo*I
    assert erfc(-I*oo) == oo*I

    assert erfc(-x) == S(2) - erfc(x)
    assert erfc(erfcinv(x)) == x

    assert erfc(I).is_real is False
    assert erfc(0, evaluate=False).is_real
    assert erfc(0, evaluate=False).is_zero is False

    assert erfc(erfinv(x)) == 1 - x

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) is S.One
    assert erfc(1/x).as_leading_term(x) == S.Zero

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
        I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
        I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
    assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
    assert erfc(z).rewrite('expint') == S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi)
    assert erfc(z).rewrite('tractable') == _erfs(z)*exp(-z**2)
    assert expand_func(erf(x) + erfc(x)) is S.One

    assert erfc(x).as_real_imag() == \
        (erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2,
         -I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2)

    assert erfc(x).as_real_imag(deep=False) == \
        (erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2,
         -I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2)

    assert erfc(w).as_real_imag() == (erfc(w), 0)
    assert erfc(w).as_real_imag(deep=False) == (erfc(w), 0)
    raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))

    assert erfc(x).inverse() == erfcinv
Пример #12
0
def test_erfinv():
    assert erfinv(0) is S.Zero
    assert erfinv(1) is S.Infinity
    assert erfinv(nan) is S.NaN
    assert erfinv(-1) is S.NegativeInfinity

    assert erfinv(erf(w)) == w
    assert erfinv(erf(-w)) == -w

    assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2
    raises(ArgumentIndexError, lambda: erfinv(x).fdiff(2))

    assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z)
    assert erfinv(z).inverse() == erf
Пример #13
0
def test_to_Sequence_Initial_Coniditons():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    n = symbols('n', integer=True)
    _, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
    p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
    q = [(HolonomicSequence(-1 + (n + 1) * Sn, 1), 0)]
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence()
    q = [(HolonomicSequence(1 + (n**2 + 3 * n + 2) * Sn**2, [0, 1]), 0)]
    assert p == q
    p = HolonomicFunction(Dx**2 + 1 + x**3 * Dx, x, 0, [2, 3]).to_sequence()
    q = [(HolonomicSequence(
        n + Sn**2 + (n**2 + 7 * n + 12) * Sn**4,
        [2, 3, -1, Rational(-1, 2), Rational(1, 12)]), 1)]
    assert p == q
    p = HolonomicFunction(x**3 * Dx**5 + 1 + Dx, x).to_sequence()
    q = [(HolonomicSequence(1 + (n + 1) * Sn +
                            (n**5 - 5 * n**3 + 4 * n) * Sn**2), 0, 3)]
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1 + x**2))
    q = [(HolonomicSequence(n**2 + (n**2 + 2 * n) * Sn**2, [0, 0, C_2]), 0, 1)]
    assert p.to_sequence() == q
    p = p.diff()
    q = [(HolonomicSequence((n + 2) + (n + 2) * Sn**2, [C_0, 0]), 1, 0)]
    assert p.to_sequence() == q
    p = expr_to_holonomic(erf(x) + x).to_sequence()
    q = [(HolonomicSequence(
        (2 * n**2 - 2 * n) + (n**3 + 2 * n**2 - n - 2) * Sn**2,
        [0, 1 + 2 / sqrt(pi), 0, C_3]), 0, 2)]
    assert p == q
Пример #14
0
def test_unpolarify():
    from sympy.functions.elementary.complexes import (polar_lift,
                                                      principal_branch,
                                                      unpolarify)
    from sympy.core.relational import Ne
    from sympy.functions.elementary.hyperbolic import tanh
    from sympy.functions.special.error_functions import erf
    from sympy.functions.special.gamma_functions import (gamma, uppergamma)
    from sympy.abc import x
    p = exp_polar(7 * I) + 1
    u = exp(7 * I) + 1

    assert unpolarify(1) == 1
    assert unpolarify(p) == u
    assert unpolarify(p**2) == u**2
    assert unpolarify(p**x) == p**x
    assert unpolarify(p * x) == u * x
    assert unpolarify(p + x) == u + x
    assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))

    # Test reduction to principal branch 2*pi.
    t = principal_branch(x, 2 * pi)
    assert unpolarify(t) == x
    assert unpolarify(sqrt(t)) == sqrt(t)

    # Test exponents_only.
    assert unpolarify(p**p, exponents_only=True) == p**u
    assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)

    # Test functions.
    assert unpolarify(sin(p)) == sin(u)
    assert unpolarify(tanh(p)) == tanh(u)
    assert unpolarify(gamma(p)) == gamma(u)
    assert unpolarify(erf(p)) == erf(u)
    assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)

    assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
        uppergamma(sin(u), sin(u + 1))
    assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
        uppergamma(0, 2)

    assert unpolarify(Eq(p, 0)) == Eq(u, 0)
    assert unpolarify(Ne(p, 0)) == Ne(u, 0)
    assert unpolarify(polar_lift(x) > 0) == (x > 0)

    # Test bools
    assert unpolarify(True) is True
Пример #15
0
def test_recursive():
    from sympy.core.symbol import symbols
    a, b, c = symbols('a b c', positive=True)
    r = exp(-(x - a)**2) * exp(-(x - b)**2)
    e = integrate(r, (x, 0, oo), meijerg=True)
    assert simplify(e.expand()) == (sqrt(2) * sqrt(pi) * (
        (erf(sqrt(2) * (a + b) / 2) + 1) * exp(-a**2 / 2 + a * b - b**2 / 2)) /
                                    4)
    e = integrate(exp(-(x - a)**2) * exp(-(x - b)**2) * exp(c * x), (x, 0, oo),
                  meijerg=True)
    assert simplify(e) == (sqrt(2) * sqrt(pi) *
                           (erf(sqrt(2) * (2 * a + 2 * b + c) / 4) + 1) *
                           exp(-a**2 - b**2 + (2 * a + 2 * b + c)**2 / 8) / 4)
    assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \
        sqrt(pi)/2*(1 + erf(a + b + c))
    assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \
        sqrt(pi)/2*(1 - erf(a + b + c))
Пример #16
0
def test_normal_CompoundDist():
    X = Normal('X', 1, 2)
    Y = Normal('X', X, 4)
    assert density(Y)(x).simplify(
    ) == sqrt(10) * exp(-x**2 / 40 + x / 20 - S(1) / 40) / (20 * sqrt(pi))
    assert E(Y) == 1  # it is always equal to mean of X
    assert P(Y > 1) == S(1) / 2  # as 1 is the mean
    assert P(Y > 5).simplify() == S(1) / 2 - erf(sqrt(10) / 5) / 2
    assert variance(Y) == variance(X) + 4**2  # 2**2 + 4**2
Пример #17
0
def test_series():
    x = symbols('x')
    R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx**2 + 2 * x * Dx, x, 0, [0, 1]).series(n=10)
    q = x - x**3 / 3 + x**5 / 10 - x**7 / 42 + x**9 / 216 + O(x**10)
    assert p == q
    p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1])  # e^(x**2)
    q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])  # cos(x)
    r = (p * q).series(n=10)  # expansion of cos(x) * exp(x**2)
    s = 1 + x**2 / 2 + x**4 / 24 - 31 * x**6 / 720 - 179 * x**8 / 8064 + O(x**
                                                                           10)
    assert r == s
    t = HolonomicFunction((1 + x) * Dx**2 + Dx, x, 0, [0, 1])  # log(1 + x)
    r = (p * t + q).series(n=10)
    s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\
     71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10)
    assert r == s
    p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
        (4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7)
    q = x + x**3 / 6 - 3 * x**4 / 16 + x**5 / 20 - 23 * x**6 / 960 + O(x**7)
    assert p == q
    p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
        (4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7)
    q = 1 - 3 * x**2 / 4 - x**3 / 4 - 5 * x**4 / 32 - 3 * x**5 / 40 - 17 * x**6 / 384 + O(
        x**7)
    assert p == q
    p = expr_to_holonomic(erf(x) + x).series(n=10)
    C_3 = symbols('C_3')
    q = (erf(x) + x).series(n=10)
    assert p.subs(C_3, -2 / (3 * sqrt(pi))) == q
    assert expr_to_holonomic(
        sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10)
    assert expr_to_holonomic((2 * x - 3 * x**2)**Rational(
        1, 3)).series() == ((2 * x - 3 * x**2)**Rational(1, 3)).series()
    assert expr_to_holonomic(sqrt(x**2 - x)).series() == (sqrt(x**2 -
                                                               x)).series()
    assert expr_to_holonomic(cos(x)**2 / x**2, y0={
        -2: [1, 0, -1]
    }).series(n=10) == (cos(x)**2 / x**2).series(n=10)
    assert expr_to_holonomic(cos(x)**2 / x**2, x0=1).series(
        n=10).together() == (cos(x)**2 / x**2).series(n=10, x0=1).together()
    assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \
        == (cos(x-1)**2/(x-1)**2).series(x0=1, n=10)
Пример #18
0
def test_gruntz_eval_special():
    # Gruntz, p. 126
    assert gruntz(
        exp(x) * (sin(1 / x + exp(-x)) - sin(1 / x + exp(-x**2))), x, oo) == 1
    assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2),
                  x, oo) == -2 / sqrt(pi)
    assert gruntz(
        exp(exp(x)) * (exp(sin(1 / x + exp(-exp(x)))) - exp(sin(1 / x))), x,
        oo) == 1
    assert gruntz(exp(x) * (gamma(x + exp(-x)) - gamma(x)), x, oo) is oo
    assert gruntz(exp(exp(digamma(digamma(x)))) / x, x,
                  oo) == exp(Rational(-1, 2))
    assert gruntz(exp(exp(digamma(log(x)))) / x, x, oo) == exp(Rational(-1, 2))
    assert gruntz(digamma(digamma(digamma(x))), x, oo) is oo
    assert gruntz(loggamma(loggamma(x)), x, oo) is oo
    assert gruntz(
        ((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x) - cos(1 / x)) * x *
        log(x), x, oo) == Rational(-1, 2)
    assert gruntz(x * (gamma(x - 1/gamma(x)) - gamma(x) + log(x)), x, oo) \
        == S.Half
    assert gruntz((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x), x, oo) == 1
Пример #19
0
def test_WienerProcess():
    X = WienerProcess("X")
    assert X.state_space == S.Reals
    assert X.index_set == Interval(0, oo)

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(t) == NormalDistribution(0, sqrt(t))
    with warns_deprecated_sympy():
        X.distribution(X(t))
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-2))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)),
               sqrt(6) * exp(-X(2)**2 / 4) * exp(-X(3)**2 / 6) / (12 * pi)))
    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)),
               sqrt(6) * exp(-X(4)**2 / 8) * exp(-X(6)**2 / 12) / (24 * pi)))

    assert P(X(t) < 3).simplify() == erf(3 * sqrt(2) /
                                         (2 * sqrt(t))) / 2 + S(1) / 2
    assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
                erf(sqrt(2)/2)/2

    # Equivalent to P(X(1)>1)**4
    assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
        Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
        & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
        (1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16

    # Contains an overlapping interval so, return Probability
    assert P((X(t) < 2) & (X(d) > 3),
             Contains(t, Interval.Lopen(0, 2))
             & Contains(d, Interval.Ropen(2, 4))) == Probability(
                 (X(d) > 3) & (X(t) < 2),
                 Contains(d, Interval.Ropen(2, 4))
                 & Contains(t, Interval.Lopen(0, 2)))

    assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
        Contains(d, Interval.Lopen(7, 8))).simplify()) == \
                '-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
    # Distribution has mean 0 at each timestamp
    assert E(X(t)) == 0
    assert E(
        x * (X(t) + X(d)) * (X(t)**2 + X(d)**2),
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Ropen(1, 2))) == Expectation(
            x * (X(d) + X(t)) * (X(d)**2 + X(t)**2),
            Contains(d, Interval.Ropen(1, 2))
            & Contains(t, Interval.Lopen(0, 1)))
    assert E(X(t) + x * E(X(3))) == 0

    #test issue 20078
    assert (2 * X(t) + 3 * X(t)).simplify() == 5 * X(t)
    assert (2 * X(t) - 3 * X(t)).simplify() == -X(t)
    assert (2 * (0.25 * X(t))).simplify() == 0.5 * X(t)
    assert (2 * X(t) * 0.25 * X(t)).simplify() == 0.5 * X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1) * X(t)**2
Пример #20
0
def test_from_meijerg():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = from_meijerg(
        meijerg(([], [Rational(3, 2)]), ([S.Half], [S.Half, 1]), x))
    q = HolonomicFunction(x/2 - Rational(1, 4) + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \
        [1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))])
    assert p == q
    p = from_meijerg(meijerg(([], []), ([0], []), x))
    q = HolonomicFunction(1 + Dx, x, 0, [1])
    assert p == q
    p = from_meijerg(meijerg(([1], []), ([S.Half], [0]), x))
    q = HolonomicFunction((x + S.Half) * Dx + x * Dx**2, x, 1,
                          [sqrt(pi) * erf(1), exp(-1)])
    assert p == q
    p = from_meijerg(meijerg(([0], [1]), ([0], []), 2 * x**2))
    q = HolonomicFunction((3 * x**2 - 1) * Dx + x**3 * Dx**2, x, 1,
                          [-exp(Rational(-1, 2)) + 1, -exp(Rational(-1, 2))])
    assert p == q
Пример #21
0
def test_heurisch_hacking():
    assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \
        x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14
    assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \
        x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14

    assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \
        sqrt(7)*asinh(sqrt(7)*x)/7
    assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \
        sqrt(7)*asin(sqrt(7)*x)/7

    assert heurisch(exp(-7*x**2), x, hints=[]) == \
        sqrt(7*pi)*erf(sqrt(7)*x)/14

    assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \
        asin(x*Rational(2, 3))/2

    assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \
        asinh(x*Rational(2, 3))/2
Пример #22
0
def test_fps__asymptotic():
    f = exp(x)
    assert fps(f, x, oo) == f
    assert fps(f, x, -oo).truncate() == O(1/x**6, (x, oo))

    f = erf(x)
    assert fps(f, x, oo).truncate() == 1 + O(1/x**6, (x, oo))
    assert fps(f, x, -oo).truncate() == -1 + O(1/x**6, (x, oo))

    f = atan(x)
    assert fps(f, x, oo, full=True).truncate() == \
        -1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2 + O(1/x**6, (x, oo))
    assert fps(f, x, -oo, full=True).truncate() == \
        -1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2 + O(1/x**6, (x, oo))

    f = log(1 + x)
    assert fps(f, x, oo) != \
        (-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x - log(1/x) +
         O(1/x**6, (x, oo)))
    assert fps(f, x, -oo) != \
        (-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x + I*pi -
         log(-1/x) + O(1/x**6, (x, oo)))
Пример #23
0
def test_ratsimp():
    f, g = 1 / x + 1 / y, (x + y) / (x * y)

    assert f != g and ratsimp(f) == g

    f, g = 1 / (1 + 1 / x), 1 - 1 / (x + 1)

    assert f != g and ratsimp(f) == g

    f, g = x / (x + y) + y / (x + y), 1

    assert f != g and ratsimp(f) == g

    f, g = -x - y - y**2 / (x + y) + x**2 / (x + y), -2 * y

    assert f != g and ratsimp(f) == g

    f = (a * c * x * y + a * c * z - b * d * x * y - b * d * z -
         b * t * x * y - b * t * x - b * t * z + e * x) / (x * y + z)
    G = [
        a * c - b * d - b * t + (-b * t * x + e * x) / (x * y + z),
        a * c - b * d - b * t - (b * t * x - e * x) / (x * y + z)
    ]

    assert f != g and ratsimp(f) in G

    A = sqrt(pi)

    B = log(erf(x) - 1)
    C = log(erf(x) + 1)

    D = 8 - 8 * erf(x)

    f = A * B / D - A * C / D + A * C * erf(x) / D - A * B * erf(
        x) / D + 2 * A / D

    assert ratsimp(f) == A * B / 8 - A * C / 8 - A / (4 * erf(x) - 4)
Пример #24
0
def test_sympy__functions__special__error_functions__erf():
    from sympy.functions.special.error_functions import erf
    assert _test_args(erf(2))
Пример #25
0
def test_fresnel():
    assert fresnels(0) is S.Zero
    assert fresnels(oo) is S.Half
    assert fresnels(-oo) == Rational(-1, 2)
    assert fresnels(I*oo) == -I*S.Half

    assert unchanged(fresnels, z)
    assert fresnels(-z) == -fresnels(z)
    assert fresnels(I*z) == -I*fresnels(z)
    assert fresnels(-I*z) == I*fresnels(z)

    assert conjugate(fresnels(z)) == fresnels(conjugate(z))

    assert fresnels(z).diff(z) == sin(pi*z**2/2)

    assert fresnels(z).rewrite(erf) == (S.One + I)/4 * (
        erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))

    assert fresnels(z).rewrite(hyper) == \
        pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)

    assert fresnels(z).series(z, n=15) == \
        pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)

    assert fresnels(w).is_extended_real is True
    assert fresnels(w).is_finite is True

    assert fresnels(z).is_extended_real is None
    assert fresnels(z).is_finite is None

    assert fresnels(z).as_real_imag() == (fresnels(re(z) - I*im(z))/2 +
                    fresnels(re(z) + I*im(z))/2,
                    -I*(-fresnels(re(z) - I*im(z)) + fresnels(re(z) + I*im(z)))/2)

    assert fresnels(z).as_real_imag(deep=False) == (fresnels(re(z) - I*im(z))/2 +
                    fresnels(re(z) + I*im(z))/2,
                    -I*(-fresnels(re(z) - I*im(z)) + fresnels(re(z) + I*im(z)))/2)

    assert fresnels(w).as_real_imag() == (fresnels(w), 0)
    assert fresnels(w).as_real_imag(deep=True) == (fresnels(w), 0)

    assert fresnels(2 + 3*I).as_real_imag() == (
            fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2,
            -I*(fresnels(2 + 3*I) - fresnels(2 - 3*I))/2
            )

    assert expand_func(integrate(fresnels(z), z)) == \
        z*fresnels(z) + cos(pi*z**2/2)/pi

    assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(9, 4) * \
        meijerg(((), (1,)), ((Rational(3, 4),),
        (Rational(1, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(3, 4)*(z**2)**Rational(3, 4))

    assert fresnelc(0) is S.Zero
    assert fresnelc(oo) == S.Half
    assert fresnelc(-oo) == Rational(-1, 2)
    assert fresnelc(I*oo) == I*S.Half

    assert unchanged(fresnelc, z)
    assert fresnelc(-z) == -fresnelc(z)
    assert fresnelc(I*z) == I*fresnelc(z)
    assert fresnelc(-I*z) == -I*fresnelc(z)

    assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))

    assert fresnelc(z).diff(z) == cos(pi*z**2/2)

    assert fresnelc(z).rewrite(erf) == (S.One - I)/4 * (
        erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))

    assert fresnelc(z).rewrite(hyper) == \
        z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)

    assert fresnelc(w).is_extended_real is True

    assert fresnelc(z).as_real_imag() == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(z).as_real_imag(deep=False) == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(2 + 3*I).as_real_imag() == (
        fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2,
         -I*(fresnelc(2 + 3*I) - fresnelc(2 - 3*I))/2
    )

    assert expand_func(integrate(fresnelc(z), z)) == \
        z*fresnelc(z) - sin(pi*z**2/2)/pi

    assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(3, 4) * \
        meijerg(((), (1,)), ((Rational(1, 4),),
        (Rational(3, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(1, 4)*(z**2)**Rational(1, 4))

    from sympy.core.random import verify_numerically

    verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
    verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)

    verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
    verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)

    raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2))
    raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2))

    assert fresnels(x).taylor_term(-1, x) is S.Zero
    assert fresnelc(x).taylor_term(-1, x) is S.Zero
    assert fresnelc(x).taylor_term(1, x) == -pi**2*x**5/40
Пример #26
0
def test_erf2():

    assert erf2(0, 0) is S.Zero
    assert erf2(x, x) is S.Zero
    assert erf2(nan, 0) is nan

    assert erf2(-oo,  y) ==  erf(y) + 1
    assert erf2( oo,  y) ==  erf(y) - 1
    assert erf2(  x, oo) ==  1 - erf(x)
    assert erf2(  x,-oo) == -1 - erf(x)
    assert erf2(x, erf2inv(x, y)) == y

    assert erf2(-x, -y) == -erf2(x,y)
    assert erf2(-x,  y) == erf(y) + erf(x)
    assert erf2( x, -y) == -erf(y) - erf(x)
    assert erf2(x, y).rewrite('fresnels') == erf(y).rewrite(fresnels)-erf(x).rewrite(fresnels)
    assert erf2(x, y).rewrite('fresnelc') == erf(y).rewrite(fresnelc)-erf(x).rewrite(fresnelc)
    assert erf2(x, y).rewrite('hyper') == erf(y).rewrite(hyper)-erf(x).rewrite(hyper)
    assert erf2(x, y).rewrite('meijerg') == erf(y).rewrite(meijerg)-erf(x).rewrite(meijerg)
    assert erf2(x, y).rewrite('uppergamma') == erf(y).rewrite(uppergamma) - erf(x).rewrite(uppergamma)
    assert erf2(x, y).rewrite('expint') == erf(y).rewrite(expint)-erf(x).rewrite(expint)

    assert erf2(I, 0).is_real is False
    assert erf2(0, 0, evaluate=False).is_real
    assert erf2(0, 0, evaluate=False).is_zero
    assert erf2(x, x, evaluate=False).is_zero
    assert erf2(x, y).is_zero is None

    assert expand_func(erf(x) + erf2(x, y)) == erf(y)

    assert conjugate(erf2(x, y)) == erf2(conjugate(x), conjugate(y))

    assert erf2(x, y).rewrite('erf')  == erf(y) - erf(x)
    assert erf2(x, y).rewrite('erfc') == erfc(x) - erfc(y)
    assert erf2(x, y).rewrite('erfi') == I*(erfi(I*x) - erfi(I*y))

    assert erf2(x, y).diff(x) == erf2(x, y).fdiff(1)
    assert erf2(x, y).diff(y) == erf2(x, y).fdiff(2)
    assert erf2(x, y).diff(x) == -2*exp(-x**2)/sqrt(pi)
    assert erf2(x, y).diff(y) == 2*exp(-y**2)/sqrt(pi)
    raises(ArgumentIndexError, lambda: erf2(x, y).fdiff(3))

    assert erf2(x, y).is_extended_real is None
    xr, yr = symbols('xr yr', extended_real=True)
    assert erf2(xr, yr).is_extended_real is True
Пример #27
0
def test_sympy__functions__special__error_functions__erf():
    from sympy.functions.special.error_functions import erf
    assert _test_args(erf(2))
Пример #28
0
def test_erf_evalf():
    assert abs( erf(Float(2.0)) - 0.995322265 ) < 1E-8 # XXX
Пример #29
0
def test_issue_13750():
    a = Symbol('a')
    assert limit(erf(a - x), x, oo) == -1
    assert limit(erf(sqrt(x) - x), x, oo) == -1
Пример #30
0
def test_issue_10976():
    s, x = symbols('s x', real=True)
    assert limit(erf(s*x)/erf(s), s, 0) == x
Пример #31
0
def test_erf():
    assert erf(nan) is nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) is S.Zero

    assert erf(I*oo) == oo*I
    assert erf(-I*oo) == -oo*I

    assert erf(-2) == -erf(2)
    assert erf(-x*y) == -erf(x*y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, x, evaluate=False)) == x # To cover code in erf
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_real is False
    assert erf(0, evaluate=False).is_real
    assert erf(0, evaluate=False).is_zero

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2*x/sqrt(pi)
    assert erf(x*y).as_leading_term(y) == 2*x*y/sqrt(pi)
    assert (erf(x*y)/erf(y)).as_leading_term(y) == x
    assert erf(1/x).as_leading_term(x) == S.One

    assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I*erfi(I*z)
    assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
        I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
        I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
    assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
    assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
    assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
    assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1
    assert limit(erf(x)/x, x, 0) == 2/sqrt(pi)
    assert limit(x**(-4) - sqrt(pi)*erf(x**2) / (2*x**6), x, 0) == S(1)/3

    assert erf(x).as_real_imag() == \
        (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
         -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)

    assert erf(x).as_real_imag(deep=False) == \
        (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
         -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)

    assert erf(w).as_real_imag() == (erf(w), 0)
    assert erf(w).as_real_imag(deep=False) == (erf(w), 0)
    # issue 13575
    assert erf(I).as_real_imag() == (0, -I*erf(I))

    raises(ArgumentIndexError, lambda: erf(x).fdiff(2))

    assert erf(x).inverse() == erfinv