def _invert_real(f, g_ys, symbol): """ Helper function for invert_real """ if not f.has(symbol): raise ValueError("Inverse of constant function doesn't exist") if f is symbol: return (f, g_ys) n = Dummy('n') if hasattr(f, 'inverse') and not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_real( f.args[0], Union( imageset(Lambda(n, n), g_ys).intersect(Interval(0, oo)), imageset(Lambda(n, -n), g_ys).intersect(Interval(-oo, 0))), symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g != S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g != S.One: return _invert_real(h, imageset(Lambda(n, n / g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if numer == S.One or numer == -S.One: return _invert_real(base, res, symbol) else: if numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: return _invert_real(expo, imageset(Lambda(n, log(n) / log(base)), g_ys), symbol) if isinstance(f, sin): n = Dummy('n') if isinstance(g_ys, FiniteSet): sin_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*asin(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], sin_invs, symbol) if isinstance(f, csc): n = Dummy('n') if isinstance(g_ys, FiniteSet): csc_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*acsc(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], csc_invs, symbol) if isinstance(f, cos): n = Dummy('n') if isinstance(g_ys, FiniteSet): cos_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs = Union(cos_invs_f1, cos_invs_f2) return _invert_real(f.args[0], cos_invs, symbol) if isinstance(f, sec): n = Dummy('n') if isinstance(g_ys, FiniteSet): sec_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs = Union(sec_invs_f1, sec_invs_f2) return _invert_real(f.args[0], sec_invs, symbol) if isinstance(f, tan) or isinstance(f, cot): n = Dummy('n') if isinstance(g_ys, FiniteSet): tan_cot_invs = Union(*[imageset(Lambda(n, n*pi + f.inverse()(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], tan_cot_invs, symbol) return (f, g_ys)
def _invert_real(f, g_ys, symbol): """ Helper function for invert_real """ if not f.has(symbol): raise ValueError("Inverse of constant function doesn't exist") if f is symbol: return (f, g_ys) n = Dummy('n') if hasattr(f, 'inverse') and not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_real(f.args[0], Union(imageset(Lambda(n, n), g_ys).intersect(Interval(0, oo)), imageset(Lambda(n, -n), g_ys).intersect(Interval(-oo, 0))), symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g != S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g != S.One: return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if numer == S.One or numer == - S.One: return _invert_real(base, res, symbol) else: if numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: return _invert_real(expo, imageset(Lambda(n, log(n)/log(base)), g_ys), symbol) if isinstance(f, sin): n = Dummy('n') if isinstance(g_ys, FiniteSet): sin_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*asin(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], sin_invs, symbol) if isinstance(f, csc): n = Dummy('n') if isinstance(g_ys, FiniteSet): csc_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*acsc(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], csc_invs, symbol) if isinstance(f, cos): n = Dummy('n') if isinstance(g_ys, FiniteSet): cos_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs = Union(cos_invs_f1, cos_invs_f2) return _invert_real(f.args[0], cos_invs, symbol) if isinstance(f, sec): n = Dummy('n') if isinstance(g_ys, FiniteSet): sec_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs = Union(sec_invs_f1, sec_invs_f2) return _invert_real(f.args[0], sec_invs, symbol) if isinstance(f, tan) or isinstance(f, cot): n = Dummy('n') if isinstance(g_ys, FiniteSet): tan_cot_invs = Union(*[imageset(Lambda(n, n*pi + f.inverse()(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], tan_cot_invs, symbol) return (f, g_ys)