def test_issue_8601(): n = Symbol('n', integer=True, negative=True) assert catalan(n - 1) == S.Zero assert catalan(-S.Half) == S.ComplexInfinity assert catalan(-S.One) == -S.Half c1 = catalan(-5.6).evalf() assert str(c1) == '6.93334070531408e-5' c2 = catalan(-35.4).evalf() assert str(c2) == '-4.14189164517449e-24'
def test_issue_8601(): n = Symbol("n", integer=True, negative=True) assert catalan(n - 1) is S.Zero assert catalan(Rational(-1, 2)) is S.ComplexInfinity assert catalan(-S.One) == Rational(-1, 2) c1 = catalan(-5.6).evalf() assert str(c1) == "6.93334070531408e-5" c2 = catalan(-35.4).evalf() assert str(c2) == "-4.14189164517449e-24"
def test_Function(): assert mcode(f(x, y, z)) == "f[x, y, z]" assert mcode(sin(x)**cos(x)) == "Sin[x]^Cos[x]" assert mcode(conjugate(x)) == "Conjugate[x]" assert mcode(Max(x, y, z) * Min(y, z)) == "Max[x, y, z]*Min[y, z]" assert mcode(fresnelc(x)) == "FresnelC[x]" assert mcode(fresnels(x)) == "FresnelS[x]" assert mcode(gamma(x)) == "Gamma[x]" assert mcode(uppergamma(x, y)) == "Gamma[x, y]" assert mcode(polygamma(x, y)) == "PolyGamma[x, y]" assert mcode(loggamma(x)) == "LogGamma[x]" assert mcode(erf(x)) == "Erf[x]" assert mcode(erfc(x)) == "Erfc[x]" assert mcode(erfi(x)) == "Erfi[x]" assert mcode(erf2(x, y)) == "Erf[x, y]" assert mcode(expint(x, y)) == "ExpIntegralE[x, y]" assert mcode(erfcinv(x)) == "InverseErfc[x]" assert mcode(erfinv(x)) == "InverseErf[x]" assert mcode(erf2inv(x, y)) == "InverseErf[x, y]" assert mcode(Ei(x)) == "ExpIntegralEi[x]" assert mcode(Ci(x)) == "CosIntegral[x]" assert mcode(li(x)) == "LogIntegral[x]" assert mcode(Si(x)) == "SinIntegral[x]" assert mcode(Shi(x)) == "SinhIntegral[x]" assert mcode(Chi(x)) == "CoshIntegral[x]" assert mcode(beta(x, y)) == "Beta[x, y]" assert mcode(factorial(x)) == "Factorial[x]" assert mcode(factorial2(x)) == "Factorial2[x]" assert mcode(subfactorial(x)) == "Subfactorial[x]" assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]" assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]" assert mcode(catalan(x)) == "CatalanNumber[x]" assert mcode(harmonic(x)) == "HarmonicNumber[x]" assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
def test_issue_8496(): n = Symbol("n") k = Symbol("k") raises(TypeError, lambda: catalan(n, k))
def test_catalan(): n = Symbol('n', integer=True) m = Symbol('m', integer=True, positive=True) k = Symbol('k', integer=True, nonnegative=True) p = Symbol('p', nonnegative=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert catalan(x) == catalan(x) assert catalan(2 * x).rewrite(binomial) == binomial(4 * x, 2 * x) / (2 * x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8 / (3 * pi) assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3 * x).rewrite(gamma) == 4**( 3 * x) * gamma(3 * x + Rational(1, 2)) / (sqrt(pi) * gamma(3 * x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2, ), 1) assert catalan(n).rewrite(factorial) == factorial( 2 * n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma(0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4)) * catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)' # Assumptions assert catalan(p).is_positive is True assert catalan(k).is_integer is True assert catalan(m + 3).is_composite is True
def test_catalan(): assert catalan(1) == 1 assert catalan(2) == 2 assert catalan(3) == 5 assert catalan(4) == 14 assert catalan(x) == catalan(x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert diff(catalan(x), x) == (polygamma( 0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x) c = catalan(0.5).evalf() assert str(c) == '0.848826363156775'
def test_issue_8496(): n = Symbol("n") k = Symbol("k") raises(TypeError, lambda: catalan(n, k)) raises(TypeError, lambda: euler(n, k))
def test_catalan(): n = Symbol('n', integer=True) m = Symbol('n', integer=True, positive=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert catalan(x) == catalan(x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi) assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)'
def test_catalan(): assert catalan(1) == 1 assert catalan(2) == 2 assert catalan(3) == 5 assert catalan(4) == 14 assert catalan(x) == catalan(x) assert catalan(2 * x).rewrite(binomial) == binomial(4 * x, 2 * x) / (2 * x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8 / (3 * pi) assert catalan(3 * x).rewrite(gamma) == 4**( 3 * x) * gamma(3 * x + Rational(1, 2)) / (sqrt(pi) * gamma(3 * x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2, ), 1) assert diff(catalan(x), x) == (polygamma(0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4)) * catalan(x) c = catalan(0.5).evalf() assert str(c) == '0.848826363156775'