def tofunc(nu, z):
     return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
def besselsimp(expr):
    """
    Simplify bessel-type functions.

    This routine tries to simplify bessel-type functions. Currently it only
    works on the Bessel J and I functions, however. It works by looking at all
    such functions in turn, and eliminating factors of "I" and "-1" (actually
    their polar equivalents) in front of the argument. Then, functions of
    half-integer order are rewritten using strigonometric functions and
    functions of integer order (> 1) are rewritten using functions
    of low order.  Finally, if the expression was changed, compute
    factorization of the result with factor().

    >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S
    >>> from sympy.abc import z, nu
    >>> besselsimp(besselj(nu, z*polar_lift(-1)))
    exp(I*pi*nu)*besselj(nu, z)
    >>> besselsimp(besseli(nu, z*polar_lift(-I)))
    exp(-I*pi*nu/2)*besselj(nu, z)
    >>> besselsimp(besseli(S(-1)/2, z))
    sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
    3*z*besseli(0, z)/2
    """
    # TODO
    # - better algorithm?
    # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ...
    # - use contiguity relations?

    def replacer(fro, to, factors):
        factors = set(factors)

        def repl(nu, z):
            if factors.intersection(Mul.make_args(z)):
                return to(nu, z)
            return fro(nu, z)
        return repl

    def torewrite(fro, to):
        def tofunc(nu, z):
            return fro(nu, z).rewrite(to)
        return tofunc

    def tominus(fro):
        def tofunc(nu, z):
            return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
        return tofunc

    orig_expr = expr

    ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)]
    expr = expr.replace(
        besselj, replacer(besselj,
        torewrite(besselj, besseli), ifactors))
    expr = expr.replace(
        besseli, replacer(besseli,
        torewrite(besseli, besselj), ifactors))

    minusfactors = [-1, exp_polar(I*pi)]
    expr = expr.replace(
        besselj, replacer(besselj, tominus(besselj), minusfactors))
    expr = expr.replace(
        besseli, replacer(besseli, tominus(besseli), minusfactors))

    z0 = Dummy('z')

    def expander(fro):
        def repl(nu, z):
            if (nu % 1) == S(1)/2:
                return exptrigsimp(trigsimp(unpolarify(
                        fro(nu, z0).rewrite(besselj).rewrite(jn).expand(
                            func=True)).subs(z0, z)))
            elif nu.is_Integer and nu > 1:
                return fro(nu, z).expand(func=True)
            return fro(nu, z)
        return repl

    expr = expr.replace(besselj, expander(besselj))
    expr = expr.replace(bessely, expander(bessely))
    expr = expr.replace(besseli, expander(besseli))
    expr = expr.replace(besselk, expander(besselk))

    if expr != orig_expr:
        expr = expr.factor()

    return expr
Пример #3
0
def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
    """
    reduces expression by combining powers with similar bases and exponents.

    Notes
    =====

    If deep is True then powsimp() will also simplify arguments of
    functions. By default deep is set to False.

    If force is True then bases will be combined without checking for
    assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
    if x and y are both negative.

    You can make powsimp() only combine bases or only combine exponents by
    changing combine='base' or combine='exp'.  By default, combine='all',
    which does both.  combine='base' will only combine::

         a   a          a                          2x      x
        x * y  =>  (x*y)   as well as things like 2   =>  4

    and combine='exp' will only combine
    ::

         a   b      (a + b)
        x * x  =>  x

    combine='exp' will strictly only combine exponents in the way that used
    to be automatic.  Also use deep=True if you need the old behavior.

    When combine='all', 'exp' is evaluated first.  Consider the first
    example below for when there could be an ambiguity relating to this.
    This is done so things like the second example can be completely
    combined.  If you want 'base' combined first, do something like
    powsimp(powsimp(expr, combine='base'), combine='exp').

    Examples
    ========

    >>> from sympy import powsimp, exp, log, symbols
    >>> from sympy.abc import x, y, z, n
    >>> powsimp(x**y*x**z*y**z, combine='all')
    x**(y + z)*y**z
    >>> powsimp(x**y*x**z*y**z, combine='exp')
    x**(y + z)*y**z
    >>> powsimp(x**y*x**z*y**z, combine='base', force=True)
    x**y*(x*y)**z

    >>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
    (n*x)**(y + z)
    >>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
    n**(y + z)*x**(y + z)
    >>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
    (n*x)**y*(n*x)**z

    >>> x, y = symbols('x y', positive=True)
    >>> powsimp(log(exp(x)*exp(y)))
    log(exp(x)*exp(y))
    >>> powsimp(log(exp(x)*exp(y)), deep=True)
    x + y

    Radicals with Mul bases will be combined if combine='exp'

    >>> from sympy import sqrt, Mul
    >>> x, y = symbols('x y')

    Two radicals are automatically joined through Mul:

    >>> a=sqrt(x*sqrt(y))
    >>> a*a**3 == a**4
    True

    But if an integer power of that radical has been
    autoexpanded then Mul does not join the resulting factors:

    >>> a**4 # auto expands to a Mul, no longer a Pow
    x**2*y
    >>> _*a # so Mul doesn't combine them
    x**2*y*sqrt(x*sqrt(y))
    >>> powsimp(_) # but powsimp will
    (x*sqrt(y))**(5/2)
    >>> powsimp(x*y*a) # but won't when doing so would violate assumptions
    x*y*sqrt(x*sqrt(y))

    """
    from sympy.matrices.expressions.matexpr import MatrixSymbol

    def recurse(arg, **kwargs):
        _deep = kwargs.get('deep', deep)
        _combine = kwargs.get('combine', combine)
        _force = kwargs.get('force', force)
        _measure = kwargs.get('measure', measure)
        return powsimp(arg, _deep, _combine, _force, _measure)

    expr = sympify(expr)

    if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or (
            expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
        return expr

    if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
        expr = expr.func(*[recurse(w) for w in expr.args])

    if expr.is_Pow:
        return recurse(expr*_y, deep=False)/_y

    if not expr.is_Mul:
        return expr

    # handle the Mul
    if combine in ('exp', 'all'):
        # Collect base/exp data, while maintaining order in the
        # non-commutative parts of the product
        c_powers = defaultdict(list)
        nc_part = []
        newexpr = []
        coeff = S.One
        for term in expr.args:
            if term.is_Rational:
                coeff *= term
                continue
            if term.is_Pow:
                term = _denest_pow(term)
            if term.is_commutative:
                b, e = term.as_base_exp()
                if deep:
                    b, e = [recurse(i) for i in [b, e]]
                if b.is_Pow or isinstance(b, exp):
                    # don't let smthg like sqrt(x**a) split into x**a, 1/2
                    # or else it will be joined as x**(a/2) later
                    b, e = b**e, S.One
                c_powers[b].append(e)
            else:
                # This is the logic that combines exponents for equal,
                # but non-commutative bases: A**x*A**y == A**(x+y).
                if nc_part:
                    b1, e1 = nc_part[-1].as_base_exp()
                    b2, e2 = term.as_base_exp()
                    if (b1 == b2 and
                            e1.is_commutative and e2.is_commutative):
                        nc_part[-1] = Pow(b1, Add(e1, e2))
                        continue
                nc_part.append(term)

        # add up exponents of common bases
        for b, e in ordered(iter(c_powers.items())):
            # allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
            # Numbers since autoevaluation will undo it, e.g.
            # 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
            if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
                    coeff is not S.One and
                    b not in (S.One, S.NegativeOne)):
                m = multiplicity(abs(b), abs(coeff))
                if m:
                    e.append(m)
                    coeff /= b**m
            c_powers[b] = Add(*e)
        if coeff is not S.One:
            if coeff in c_powers:
                c_powers[coeff] += S.One
            else:
                c_powers[coeff] = S.One

        # convert to plain dictionary
        c_powers = dict(c_powers)

        # check for base and inverted base pairs
        be = list(c_powers.items())
        skip = set()  # skip if we already saw them
        for b, e in be:
            if b in skip:
                continue
            bpos = b.is_positive or b.is_polar
            if bpos:
                binv = 1/b
                if b != binv and binv in c_powers:
                    if b.as_numer_denom()[0] is S.One:
                        c_powers.pop(b)
                        c_powers[binv] -= e
                    else:
                        skip.add(binv)
                        e = c_powers.pop(binv)
                        c_powers[b] -= e

        # check for base and negated base pairs
        be = list(c_powers.items())
        _n = S.NegativeOne
        for i, (b, e) in enumerate(be):
            if ((-b).is_Symbol or b.is_Add) and -b in c_powers:
                if (b.is_positive in (0, 1) or e.is_integer):
                    c_powers[-b] += c_powers.pop(b)
                    if _n in c_powers:
                        c_powers[_n] += e
                    else:
                        c_powers[_n] = e

        # filter c_powers and convert to a list
        c_powers = [(b, e) for b, e in c_powers.items() if e]

        # ==============================================================
        # check for Mul bases of Rational powers that can be combined with
        # separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
        # (x*sqrt(x*y))**(3/2)
        # ---------------- helper functions

        def ratq(x):
            '''Return Rational part of x's exponent as it appears in the bkey.
            '''
            return bkey(x)[0][1]

        def bkey(b, e=None):
            '''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
            it will be taken by using as_base_exp() on the input b.
            e.g.
                x**3/2 -> (x, 2), 3
                x**y -> (x**y, 1), 1
                x**(2*y/3) -> (x**y, 3), 2
                exp(x/2) -> (exp(a), 2), 1

            '''
            if e is not None:  # coming from c_powers or from below
                if e.is_Integer:
                    return (b, S.One), e
                elif e.is_Rational:
                    return (b, Integer(e.q)), Integer(e.p)
                else:
                    c, m = e.as_coeff_Mul(rational=True)
                    if c is not S.One:
                        if m.is_integer:
                            return (b, Integer(c.q)), m*Integer(c.p)
                        return (b**m, Integer(c.q)), Integer(c.p)
                    else:
                        return (b**e, S.One), S.One
            else:
                return bkey(*b.as_base_exp())

        def update(b):
            '''Decide what to do with base, b. If its exponent is now an
            integer multiple of the Rational denominator, then remove it
            and put the factors of its base in the common_b dictionary or
            update the existing bases if necessary. If it has been zeroed
            out, simply remove the base.
            '''
            newe, r = divmod(common_b[b], b[1])
            if not r:
                common_b.pop(b)
                if newe:
                    for m in Mul.make_args(b[0]**newe):
                        b, e = bkey(m)
                        if b not in common_b:
                            common_b[b] = 0
                        common_b[b] += e
                        if b[1] != 1:
                            bases.append(b)
        # ---------------- end of helper functions

        # assemble a dictionary of the factors having a Rational power
        common_b = {}
        done = []
        bases = []
        for b, e in c_powers:
            b, e = bkey(b, e)
            if b in common_b:
                common_b[b] = common_b[b] + e
            else:
                common_b[b] = e
            if b[1] != 1 and b[0].is_Mul:
                bases.append(b)
        bases.sort(key=default_sort_key)  # this makes tie-breaking canonical
        bases.sort(key=measure, reverse=True)  # handle longest first
        for base in bases:
            if base not in common_b:  # it may have been removed already
                continue
            b, exponent = base
            last = False  # True when no factor of base is a radical
            qlcm = 1  # the lcm of the radical denominators
            while True:
                bstart = b
                qstart = qlcm

                bb = []  # list of factors
                ee = []  # (factor's expo. and it's current value in common_b)
                for bi in Mul.make_args(b):
                    bib, bie = bkey(bi)
                    if bib not in common_b or common_b[bib] < bie:
                        ee = bb = []  # failed
                        break
                    ee.append([bie, common_b[bib]])
                    bb.append(bib)
                if ee:
                    # find the number of integral extractions possible
                    # e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
                    min1 = ee[0][1]//ee[0][0]
                    for i in range(1, len(ee)):
                        rat = ee[i][1]//ee[i][0]
                        if rat < 1:
                            break
                        min1 = min(min1, rat)
                    else:
                        # update base factor counts
                        # e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
                        # and the new base counts will be 5-2*2 and 6-2*3
                        for i in range(len(bb)):
                            common_b[bb[i]] -= min1*ee[i][0]
                            update(bb[i])
                        # update the count of the base
                        # e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
                        # will increase by 4 to give bkey (x*sqrt(y), 2, 5)
                        common_b[base] += min1*qstart*exponent
                if (last  # no more radicals in base
                    or len(common_b) == 1  # nothing left to join with
                    or all(k[1] == 1 for k in common_b)  # no rad's in common_b
                        ):
                    break
                # see what we can exponentiate base by to remove any radicals
                # so we know what to search for
                # e.g. if base were x**(1/2)*y**(1/3) then we should
                # exponentiate by 6 and look for powers of x and y in the ratio
                # of 2 to 3
                qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
                if qlcm == 1:
                    break  # we are done
                b = bstart**qlcm
                qlcm *= qstart
                if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
                    last = True  # we are going to be done after this next pass
            # this base no longer can find anything to join with and
            # since it was longer than any other we are done with it
            b, q = base
            done.append((b, common_b.pop(base)*Rational(1, q)))

        # update c_powers and get ready to continue with powsimp
        c_powers = done
        # there may be terms still in common_b that were bases that were
        # identified as needing processing, so remove those, too
        for (b, q), e in common_b.items():
            if (b.is_Pow or isinstance(b, exp)) and \
                    q is not S.One and not b.exp.is_Rational:
                b, be = b.as_base_exp()
                b = b**(be/q)
            else:
                b = root(b, q)
            c_powers.append((b, e))
        check = len(c_powers)
        c_powers = dict(c_powers)
        assert len(c_powers) == check  # there should have been no duplicates
        # ==============================================================

        # rebuild the expression
        newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()]))
        if combine == 'exp':
            return expr.func(newexpr, expr.func(*nc_part))
        else:
            return recurse(expr.func(*nc_part), combine='base') * \
                recurse(newexpr, combine='base')

    elif combine == 'base':

        # Build c_powers and nc_part.  These must both be lists not
        # dicts because exp's are not combined.
        c_powers = []
        nc_part = []
        for term in expr.args:
            if term.is_commutative:
                c_powers.append(list(term.as_base_exp()))
            else:
                nc_part.append(term)

        # Pull out numerical coefficients from exponent if assumptions allow
        # e.g., 2**(2*x) => 4**x
        for i in range(len(c_powers)):
            b, e = c_powers[i]
            if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar):
                continue
            exp_c, exp_t = e.as_coeff_Mul(rational=True)
            if exp_c is not S.One and exp_t is not S.One:
                c_powers[i] = [Pow(b, exp_c), exp_t]

        # Combine bases whenever they have the same exponent and
        # assumptions allow
        # first gather the potential bases under the common exponent
        c_exp = defaultdict(list)
        for b, e in c_powers:
            if deep:
                e = recurse(e)
            c_exp[e].append(b)
        del c_powers

        # Merge back in the results of the above to form a new product
        c_powers = defaultdict(list)
        for e in c_exp:
            bases = c_exp[e]

            # calculate the new base for e

            if len(bases) == 1:
                new_base = bases[0]
            elif e.is_integer or force:
                new_base = expr.func(*bases)
            else:
                # see which ones can be joined
                unk = []
                nonneg = []
                neg = []
                for bi in bases:
                    if bi.is_negative:
                        neg.append(bi)
                    elif bi.is_nonnegative:
                        nonneg.append(bi)
                    elif bi.is_polar:
                        nonneg.append(
                            bi)  # polar can be treated like non-negative
                    else:
                        unk.append(bi)
                if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
                    # a single neg or a single unk can join the rest
                    nonneg.extend(unk + neg)
                    unk = neg = []
                elif neg:
                    # their negative signs cancel in groups of 2*q if we know
                    # that e = p/q else we have to treat them as unknown
                    israt = False
                    if e.is_Rational:
                        israt = True
                    else:
                        p, d = e.as_numer_denom()
                        if p.is_integer and d.is_integer:
                            israt = True
                    if israt:
                        neg = [-w for w in neg]
                        unk.extend([S.NegativeOne]*len(neg))
                    else:
                        unk.extend(neg)
                        neg = []
                    del israt

                # these shouldn't be joined
                for b in unk:
                    c_powers[b].append(e)
                # here is a new joined base
                new_base = expr.func(*(nonneg + neg))
                # if there are positive parts they will just get separated
                # again unless some change is made

                def _terms(e):
                    # return the number of terms of this expression
                    # when multiplied out -- assuming no joining of terms
                    if e.is_Add:
                        return sum([_terms(ai) for ai in e.args])
                    if e.is_Mul:
                        return prod([_terms(mi) for mi in e.args])
                    return 1
                xnew_base = expand_mul(new_base, deep=False)
                if len(Add.make_args(xnew_base)) < _terms(new_base):
                    new_base = factor_terms(xnew_base)

            c_powers[new_base].append(e)

        # break out the powers from c_powers now
        c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]

        # we're done
        return expr.func(*(c_part + nc_part))

    else:
        raise ValueError("combine must be one of ('all', 'exp', 'base').")
Пример #4
0
def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
    """
    reduces expression by combining powers with similar bases and exponents.

    Explanation
    ===========

    If ``deep`` is ``True`` then powsimp() will also simplify arguments of
    functions. By default ``deep`` is set to ``False``.

    If ``force`` is ``True`` then bases will be combined without checking for
    assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
    if x and y are both negative.

    You can make powsimp() only combine bases or only combine exponents by
    changing combine='base' or combine='exp'.  By default, combine='all',
    which does both.  combine='base' will only combine::

         a   a          a                          2x      x
        x * y  =>  (x*y)   as well as things like 2   =>  4

    and combine='exp' will only combine
    ::

         a   b      (a + b)
        x * x  =>  x

    combine='exp' will strictly only combine exponents in the way that used
    to be automatic.  Also use deep=True if you need the old behavior.

    When combine='all', 'exp' is evaluated first.  Consider the first
    example below for when there could be an ambiguity relating to this.
    This is done so things like the second example can be completely
    combined.  If you want 'base' combined first, do something like
    powsimp(powsimp(expr, combine='base'), combine='exp').

    Examples
    ========

    >>> from sympy import powsimp, exp, log, symbols
    >>> from sympy.abc import x, y, z, n
    >>> powsimp(x**y*x**z*y**z, combine='all')
    x**(y + z)*y**z
    >>> powsimp(x**y*x**z*y**z, combine='exp')
    x**(y + z)*y**z
    >>> powsimp(x**y*x**z*y**z, combine='base', force=True)
    x**y*(x*y)**z

    >>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
    (n*x)**(y + z)
    >>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
    n**(y + z)*x**(y + z)
    >>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
    (n*x)**y*(n*x)**z

    >>> x, y = symbols('x y', positive=True)
    >>> powsimp(log(exp(x)*exp(y)))
    log(exp(x)*exp(y))
    >>> powsimp(log(exp(x)*exp(y)), deep=True)
    x + y

    Radicals with Mul bases will be combined if combine='exp'

    >>> from sympy import sqrt
    >>> x, y = symbols('x y')

    Two radicals are automatically joined through Mul:

    >>> a=sqrt(x*sqrt(y))
    >>> a*a**3 == a**4
    True

    But if an integer power of that radical has been
    autoexpanded then Mul does not join the resulting factors:

    >>> a**4 # auto expands to a Mul, no longer a Pow
    x**2*y
    >>> _*a # so Mul doesn't combine them
    x**2*y*sqrt(x*sqrt(y))
    >>> powsimp(_) # but powsimp will
    (x*sqrt(y))**(5/2)
    >>> powsimp(x*y*a) # but won't when doing so would violate assumptions
    x*y*sqrt(x*sqrt(y))

    """
    from sympy.matrices.expressions.matexpr import MatrixSymbol

    def recurse(arg, **kwargs):
        _deep = kwargs.get('deep', deep)
        _combine = kwargs.get('combine', combine)
        _force = kwargs.get('force', force)
        _measure = kwargs.get('measure', measure)
        return powsimp(arg, _deep, _combine, _force, _measure)

    expr = sympify(expr)

    if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol)
            or (expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
        return expr

    if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
        expr = expr.func(*[recurse(w) for w in expr.args])

    if expr.is_Pow:
        return recurse(expr * _y, deep=False) / _y

    if not expr.is_Mul:
        return expr

    # handle the Mul
    if combine in ('exp', 'all'):
        # Collect base/exp data, while maintaining order in the
        # non-commutative parts of the product
        c_powers = defaultdict(list)
        nc_part = []
        newexpr = []
        coeff = S.One
        for term in expr.args:
            if term.is_Rational:
                coeff *= term
                continue
            if term.is_Pow:
                term = _denest_pow(term)
            if term.is_commutative:
                b, e = term.as_base_exp()
                if deep:
                    b, e = [recurse(i) for i in [b, e]]
                if b.is_Pow or isinstance(b, exp):
                    # don't let smthg like sqrt(x**a) split into x**a, 1/2
                    # or else it will be joined as x**(a/2) later
                    b, e = b**e, S.One
                c_powers[b].append(e)
            else:
                # This is the logic that combines exponents for equal,
                # but non-commutative bases: A**x*A**y == A**(x+y).
                if nc_part:
                    b1, e1 = nc_part[-1].as_base_exp()
                    b2, e2 = term.as_base_exp()
                    if (b1 == b2 and e1.is_commutative and e2.is_commutative):
                        nc_part[-1] = Pow(b1, Add(e1, e2))
                        continue
                nc_part.append(term)

        # add up exponents of common bases
        for b, e in ordered(iter(c_powers.items())):
            # allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
            # Numbers since autoevaluation will undo it, e.g.
            # 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
            if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
                    coeff is not S.One and
                    b not in (S.One, S.NegativeOne)):
                m = multiplicity(abs(b), abs(coeff))
                if m:
                    e.append(m)
                    coeff /= b**m
            c_powers[b] = Add(*e)
        if coeff is not S.One:
            if coeff in c_powers:
                c_powers[coeff] += S.One
            else:
                c_powers[coeff] = S.One

        # convert to plain dictionary
        c_powers = dict(c_powers)

        # check for base and inverted base pairs
        be = list(c_powers.items())
        skip = set()  # skip if we already saw them
        for b, e in be:
            if b in skip:
                continue
            bpos = b.is_positive or b.is_polar
            if bpos:
                binv = 1 / b
                if b != binv and binv in c_powers:
                    if b.as_numer_denom()[0] is S.One:
                        c_powers.pop(b)
                        c_powers[binv] -= e
                    else:
                        skip.add(binv)
                        e = c_powers.pop(binv)
                        c_powers[b] -= e

        # check for base and negated base pairs
        be = list(c_powers.items())
        _n = S.NegativeOne
        for b, e in be:
            if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers:
                if (b.is_positive is not None or e.is_integer):
                    if e.is_integer or b.is_negative:
                        c_powers[-b] += c_powers.pop(b)
                    else:  # (-b).is_positive so use its e
                        e = c_powers.pop(-b)
                        c_powers[b] += e
                    if _n in c_powers:
                        c_powers[_n] += e
                    else:
                        c_powers[_n] = e

        # filter c_powers and convert to a list
        c_powers = [(b, e) for b, e in c_powers.items() if e]

        # ==============================================================
        # check for Mul bases of Rational powers that can be combined with
        # separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
        # (x*sqrt(x*y))**(3/2)
        # ---------------- helper functions

        def ratq(x):
            '''Return Rational part of x's exponent as it appears in the bkey.
            '''
            return bkey(x)[0][1]

        def bkey(b, e=None):
            '''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
            it will be taken by using as_base_exp() on the input b.
            e.g.
                x**3/2 -> (x, 2), 3
                x**y -> (x**y, 1), 1
                x**(2*y/3) -> (x**y, 3), 2
                exp(x/2) -> (exp(a), 2), 1

            '''
            if e is not None:  # coming from c_powers or from below
                if e.is_Integer:
                    return (b, S.One), e
                elif e.is_Rational:
                    return (b, Integer(e.q)), Integer(e.p)
                else:
                    c, m = e.as_coeff_Mul(rational=True)
                    if c is not S.One:
                        if m.is_integer:
                            return (b, Integer(c.q)), m * Integer(c.p)
                        return (b**m, Integer(c.q)), Integer(c.p)
                    else:
                        return (b**e, S.One), S.One
            else:
                return bkey(*b.as_base_exp())

        def update(b):
            '''Decide what to do with base, b. If its exponent is now an
            integer multiple of the Rational denominator, then remove it
            and put the factors of its base in the common_b dictionary or
            update the existing bases if necessary. If it has been zeroed
            out, simply remove the base.
            '''
            newe, r = divmod(common_b[b], b[1])
            if not r:
                common_b.pop(b)
                if newe:
                    for m in Mul.make_args(b[0]**newe):
                        b, e = bkey(m)
                        if b not in common_b:
                            common_b[b] = 0
                        common_b[b] += e
                        if b[1] != 1:
                            bases.append(b)

        # ---------------- end of helper functions

        # assemble a dictionary of the factors having a Rational power
        common_b = {}
        done = []
        bases = []
        for b, e in c_powers:
            b, e = bkey(b, e)
            if b in common_b:
                common_b[b] = common_b[b] + e
            else:
                common_b[b] = e
            if b[1] != 1 and b[0].is_Mul:
                bases.append(b)
        bases.sort(key=default_sort_key)  # this makes tie-breaking canonical
        bases.sort(key=measure, reverse=True)  # handle longest first
        for base in bases:
            if base not in common_b:  # it may have been removed already
                continue
            b, exponent = base
            last = False  # True when no factor of base is a radical
            qlcm = 1  # the lcm of the radical denominators
            while True:
                bstart = b
                qstart = qlcm

                bb = []  # list of factors
                ee = []  # (factor's expo. and it's current value in common_b)
                for bi in Mul.make_args(b):
                    bib, bie = bkey(bi)
                    if bib not in common_b or common_b[bib] < bie:
                        ee = bb = []  # failed
                        break
                    ee.append([bie, common_b[bib]])
                    bb.append(bib)
                if ee:
                    # find the number of integral extractions possible
                    # e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
                    min1 = ee[0][1] // ee[0][0]
                    for i in range(1, len(ee)):
                        rat = ee[i][1] // ee[i][0]
                        if rat < 1:
                            break
                        min1 = min(min1, rat)
                    else:
                        # update base factor counts
                        # e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
                        # and the new base counts will be 5-2*2 and 6-2*3
                        for i in range(len(bb)):
                            common_b[bb[i]] -= min1 * ee[i][0]
                            update(bb[i])
                        # update the count of the base
                        # e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
                        # will increase by 4 to give bkey (x*sqrt(y), 2, 5)
                        common_b[base] += min1 * qstart * exponent
                if (last  # no more radicals in base
                        or len(common_b) == 1  # nothing left to join with
                        or all(k[1] == 1
                               for k in common_b)  # no rad's in common_b
                    ):
                    break
                # see what we can exponentiate base by to remove any radicals
                # so we know what to search for
                # e.g. if base were x**(1/2)*y**(1/3) then we should
                # exponentiate by 6 and look for powers of x and y in the ratio
                # of 2 to 3
                qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
                if qlcm == 1:
                    break  # we are done
                b = bstart**qlcm
                qlcm *= qstart
                if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
                    last = True  # we are going to be done after this next pass
            # this base no longer can find anything to join with and
            # since it was longer than any other we are done with it
            b, q = base
            done.append((b, common_b.pop(base) * Rational(1, q)))

        # update c_powers and get ready to continue with powsimp
        c_powers = done
        # there may be terms still in common_b that were bases that were
        # identified as needing processing, so remove those, too
        for (b, q), e in common_b.items():
            if (b.is_Pow or isinstance(b, exp)) and \
                    q is not S.One and not b.exp.is_Rational:
                b, be = b.as_base_exp()
                b = b**(be / q)
            else:
                b = root(b, q)
            c_powers.append((b, e))
        check = len(c_powers)
        c_powers = dict(c_powers)
        assert len(c_powers) == check  # there should have been no duplicates
        # ==============================================================

        # rebuild the expression
        newexpr = expr.func(*(newexpr +
                              [Pow(b, e) for b, e in c_powers.items()]))
        if combine == 'exp':
            return expr.func(newexpr, expr.func(*nc_part))
        else:
            return recurse(expr.func(*nc_part), combine='base') * \
                recurse(newexpr, combine='base')

    elif combine == 'base':

        # Build c_powers and nc_part.  These must both be lists not
        # dicts because exp's are not combined.
        c_powers = []
        nc_part = []
        for term in expr.args:
            if term.is_commutative:
                c_powers.append(list(term.as_base_exp()))
            else:
                nc_part.append(term)

        # Pull out numerical coefficients from exponent if assumptions allow
        # e.g., 2**(2*x) => 4**x
        for i in range(len(c_powers)):
            b, e = c_powers[i]
            if not (all(x.is_nonnegative for x in b.as_numer_denom())
                    or e.is_integer or force or b.is_polar):
                continue
            exp_c, exp_t = e.as_coeff_Mul(rational=True)
            if exp_c is not S.One and exp_t is not S.One:
                c_powers[i] = [Pow(b, exp_c), exp_t]

        # Combine bases whenever they have the same exponent and
        # assumptions allow
        # first gather the potential bases under the common exponent
        c_exp = defaultdict(list)
        for b, e in c_powers:
            if deep:
                e = recurse(e)
            c_exp[e].append(b)
        del c_powers

        # Merge back in the results of the above to form a new product
        c_powers = defaultdict(list)
        for e in c_exp:
            bases = c_exp[e]

            # calculate the new base for e

            if len(bases) == 1:
                new_base = bases[0]
            elif e.is_integer or force:
                new_base = expr.func(*bases)
            else:
                # see which ones can be joined
                unk = []
                nonneg = []
                neg = []
                for bi in bases:
                    if bi.is_negative:
                        neg.append(bi)
                    elif bi.is_nonnegative:
                        nonneg.append(bi)
                    elif bi.is_polar:
                        nonneg.append(
                            bi)  # polar can be treated like non-negative
                    else:
                        unk.append(bi)
                if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
                    # a single neg or a single unk can join the rest
                    nonneg.extend(unk + neg)
                    unk = neg = []
                elif neg:
                    # their negative signs cancel in groups of 2*q if we know
                    # that e = p/q else we have to treat them as unknown
                    israt = False
                    if e.is_Rational:
                        israt = True
                    else:
                        p, d = e.as_numer_denom()
                        if p.is_integer and d.is_integer:
                            israt = True
                    if israt:
                        neg = [-w for w in neg]
                        unk.extend([S.NegativeOne] * len(neg))
                    else:
                        unk.extend(neg)
                        neg = []
                    del israt

                # these shouldn't be joined
                for b in unk:
                    c_powers[b].append(e)
                # here is a new joined base
                new_base = expr.func(*(nonneg + neg))

                # if there are positive parts they will just get separated
                # again unless some change is made

                def _terms(e):
                    # return the number of terms of this expression
                    # when multiplied out -- assuming no joining of terms
                    if e.is_Add:
                        return sum([_terms(ai) for ai in e.args])
                    if e.is_Mul:
                        return prod([_terms(mi) for mi in e.args])
                    return 1

                xnew_base = expand_mul(new_base, deep=False)
                if len(Add.make_args(xnew_base)) < _terms(new_base):
                    new_base = factor_terms(xnew_base)

            c_powers[new_base].append(e)

        # break out the powers from c_powers now
        c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]

        # we're done
        return expr.func(*(c_part + nc_part))

    else:
        raise ValueError("combine must be one of ('all', 'exp', 'base').")
Пример #5
0
 def tofunc(nu, z):
     return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
Пример #6
0
def besselsimp(expr):
    """
    Simplify bessel-type functions.

    This routine tries to simplify bessel-type functions. Currently it only
    works on the Bessel J and I functions, however. It works by looking at all
    such functions in turn, and eliminating factors of "I" and "-1" (actually
    their polar equivalents) in front of the argument. Then, functions of
    half-integer order are rewritten using strigonometric functions and
    functions of integer order (> 1) are rewritten using functions
    of low order.  Finally, if the expression was changed, compute
    factorization of the result with factor().

    >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S
    >>> from sympy.abc import z, nu
    >>> besselsimp(besselj(nu, z*polar_lift(-1)))
    exp(I*pi*nu)*besselj(nu, z)
    >>> besselsimp(besseli(nu, z*polar_lift(-I)))
    exp(-I*pi*nu/2)*besselj(nu, z)
    >>> besselsimp(besseli(S(-1)/2, z))
    sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
    3*z*besseli(0, z)/2
    """
    # TODO
    # - better algorithm?
    # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ...
    # - use contiguity relations?

    def replacer(fro, to, factors):
        factors = set(factors)

        def repl(nu, z):
            if factors.intersection(Mul.make_args(z)):
                return to(nu, z)
            return fro(nu, z)
        return repl

    def torewrite(fro, to):
        def tofunc(nu, z):
            return fro(nu, z).rewrite(to)
        return tofunc

    def tominus(fro):
        def tofunc(nu, z):
            return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
        return tofunc

    orig_expr = expr

    ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)]
    expr = expr.replace(
        besselj, replacer(besselj,
        torewrite(besselj, besseli), ifactors))
    expr = expr.replace(
        besseli, replacer(besseli,
        torewrite(besseli, besselj), ifactors))

    minusfactors = [-1, exp_polar(I*pi)]
    expr = expr.replace(
        besselj, replacer(besselj, tominus(besselj), minusfactors))
    expr = expr.replace(
        besseli, replacer(besseli, tominus(besseli), minusfactors))

    z0 = Dummy('z')

    def expander(fro):
        def repl(nu, z):
            if (nu % 1) == S(1)/2:
                return simplify(trigsimp(unpolarify(
                        fro(nu, z0).rewrite(besselj).rewrite(jn).expand(
                            func=True)).subs(z0, z)))
            elif nu.is_Integer and nu > 1:
                return fro(nu, z).expand(func=True)
            return fro(nu, z)
        return repl

    expr = expr.replace(besselj, expander(besselj))
    expr = expr.replace(bessely, expander(bessely))
    expr = expr.replace(besseli, expander(besseli))
    expr = expr.replace(besselk, expander(besselk))

    if expr != orig_expr:
        expr = expr.factor()

    return expr