Пример #1
0
def test_ccode_sign():
    expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
    expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
    expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
    assert ccode(expr1) == ref1
    assert ccode(expr1, 'z') == 'z = %s;' % ref1
    assert ccode(expr2) == ref2
    assert ccode(expr3) == ref3
Пример #2
0
def test_ccode_sign():
    expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
    expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
    expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
    assert ccode(expr1) == ref1
    assert ccode(expr1, 'z') == 'z = %s;' % ref1
    assert ccode(expr2) == ref2
    assert ccode(expr3) == ref3
Пример #3
0
def test_sign():
    expr = sign(x) * y
    assert rust_code(expr) == "y*x.signum()"
    assert rust_code(expr, assign_to='r') == "r = y*x.signum();"

    expr = sign(x + y) + 42
    assert rust_code(expr) == "(x + y).signum() + 42"
    assert rust_code(expr, assign_to='r') == "r = (x + y).signum() + 42;"

    expr = sign(cos(x))
    assert rust_code(expr) == "x.cos().signum()"
Пример #4
0
def test_ccode_sign():

    expr = sign(x) * y
    assert ccode(expr) == 'y*(((x) > 0) - ((x) < 0))'
    assert ccode(expr, 'z') == 'z = y*(((x) > 0) - ((x) < 0));'

    assert ccode(sign(2 * x + x**2) * x + x**2) == \
        'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'

    expr = sign(cos(x))
    assert ccode(expr) == '(((cos(x)) > 0) - ((cos(x)) < 0))'
Пример #5
0
def test_ccode_sign():

    expr = sign(x) * y
    assert ccode(expr) == 'y*(((x) > 0) - ((x) < 0))'
    assert ccode(expr, 'z') == 'z = y*(((x) > 0) - ((x) < 0));'

    assert ccode(sign(2 * x + x**2) * x + x**2) == \
        'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'

    expr = sign(cos(x))
    assert ccode(expr) == '(((cos(x)) > 0) - ((cos(x)) < 0))'
Пример #6
0
def test_sign():
    expr = sign(x) * y
    assert rust_code(expr) == "y*x.signum()"
    assert rust_code(expr, assign_to='r') == "r = y*x.signum();"

    expr = sign(x + y) + 42
    assert rust_code(expr) == "(x + y).signum() + 42"
    assert rust_code(expr, assign_to='r') == "r = (x + y).signum() + 42;"

    expr = sign(cos(x))
    assert rust_code(expr) == "x.cos().signum()"
Пример #7
0
def test_ccode_sign():
    expr1, ref1 = sign(x) * y, "y*(((x) > 0) - ((x) < 0))"
    expr2, ref2 = sign(cos(x)), "(((cos(x)) > 0) - ((cos(x)) < 0))"
    expr3, ref3 = (
        sign(2 * x + x ** 2) * x + x ** 2,
        "pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))",
    )
    assert ccode(expr1) == ref1
    assert ccode(expr1, "z") == "z = %s;" % ref1
    assert ccode(expr2) == ref2
    assert ccode(expr3) == ref3
Пример #8
0
def test_rcode_sgn():

    expr = sign(x) * y
    assert rcode(expr) == "y*sign(x)"
    p = rcode(expr, "z")
    assert p == "z = y*sign(x);"

    p = rcode(sign(2 * x + x**2) * x + x**2)
    assert p == "x^2 + x*sign(x^2 + 2*x)"

    expr = sign(cos(x))
    p = rcode(expr)
    assert p == "sign(cos(x))"
Пример #9
0
def test_rcode_sgn():

    expr = sign(x) * y
    assert rcode(expr) == 'y*sign(x)'
    p = rcode(expr, 'z')
    assert p  == 'z = y*sign(x);'

    p = rcode(sign(2 * x + x**2) * x + x**2)
    assert p  == "x^2 + x*sign(x^2 + 2*x)"

    expr = sign(cos(x))
    p = rcode(expr)
    assert p == 'sign(cos(x))'
Пример #10
0
def test_bounded():
    x, y = symbols('xy')
    assert ask(x, Q.bounded) == False
    assert ask(x, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x, Q.bounded, Assume(y, Q.bounded)) == False
    assert ask(x, Q.bounded, Assume(x, Q.complex)) == False

    assert ask(x+1, Q.bounded) == False
    assert ask(x+1, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x+y, Q.bounded) == None
    assert ask(x+y, Q.bounded, Assume(x, Q.bounded)) == False
    assert ask(x+1, Q.bounded, Assume(x, Q.bounded) & \
                Assume(y, Q.bounded)) == True

    assert ask(2*x, Q.bounded) == False
    assert ask(2*x, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x*y, Q.bounded) == None
    assert ask(x*y, Q.bounded, Assume(x, Q.bounded)) == False
    assert ask(x*y, Q.bounded, Assume(x, Q.bounded) & \
                Assume(y, Q.bounded)) == True

    assert ask(x**2, Q.bounded) == False
    assert ask(2**x, Q.bounded) == False
    assert ask(2**x, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x**x, Q.bounded) == False
    assert ask(Rational(1,2) ** x, Q.bounded) == True
    assert ask(x ** Rational(1,2), Q.bounded) == False

    # sign function
    assert ask(sign(x), Q.bounded) == True
    assert ask(sign(x), Q.bounded, Assume(x, Q.bounded, False)) == True

    # exponential functions
    assert ask(log(x), Q.bounded) == False
    assert ask(log(x), Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(exp(x), Q.bounded) == False
    assert ask(exp(x), Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(exp(2), Q.bounded) == True

    # trigonometric functions
    assert ask(sin(x), Q.bounded) == True
    assert ask(sin(x), Q.bounded, Assume(x, Q.bounded, False)) == True
    assert ask(cos(x), Q.bounded) == True
    assert ask(cos(x), Q.bounded, Assume(x, Q.bounded, False)) == True
    assert ask(2*sin(x), Q.bounded) == True
    assert ask(sin(x)**2, Q.bounded) == True
    assert ask(cos(x)**2, Q.bounded) == True
    assert ask(cos(x) + sin(x), Q.bounded) == True
Пример #11
0
def test_bounded():
    x, y = symbols('x,y')
    assert ask(Q.bounded(x)) == False
    assert ask(Q.bounded(x), Q.bounded(x)) == True
    assert ask(Q.bounded(x), Q.bounded(y)) == False
    assert ask(Q.bounded(x), Q.complex(x)) == False

    assert ask(Q.bounded(x + 1)) == False
    assert ask(Q.bounded(x + 1), Q.bounded(x)) == True
    assert ask(Q.bounded(x + y)) == None
    assert ask(Q.bounded(x + y), Q.bounded(x)) == False
    assert ask(Q.bounded(x + 1), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(2 * x)) == False
    assert ask(Q.bounded(2 * x), Q.bounded(x)) == True
    assert ask(Q.bounded(x * y)) == None
    assert ask(Q.bounded(x * y), Q.bounded(x)) == False
    assert ask(Q.bounded(x * y), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(x**2)) == False
    assert ask(Q.bounded(2**x)) == False
    assert ask(Q.bounded(2**x), Q.bounded(x)) == True
    assert ask(Q.bounded(x**x)) == False
    assert ask(Q.bounded(Rational(1, 2)**x)) == None
    assert ask(Q.bounded(Rational(1, 2)**x), Q.positive(x)) == True
    assert ask(Q.bounded(Rational(1, 2)**x), Q.negative(x)) == False
    assert ask(Q.bounded(sqrt(x))) == False

    # sign function
    assert ask(Q.bounded(sign(x))) == True
    assert ask(Q.bounded(sign(x)), ~Q.bounded(x)) == True

    # exponential functions
    assert ask(Q.bounded(log(x))) == False
    assert ask(Q.bounded(log(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(x))) == False
    assert ask(Q.bounded(exp(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(2))) == True

    # trigonometric functions
    assert ask(Q.bounded(sin(x))) == True
    assert ask(Q.bounded(sin(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(cos(x))) == True
    assert ask(Q.bounded(cos(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(2 * sin(x))) == True
    assert ask(Q.bounded(sin(x)**2)) == True
    assert ask(Q.bounded(cos(x)**2)) == True
    assert ask(Q.bounded(cos(x) + sin(x))) == True
Пример #12
0
def test_bounded():
    x, y = symbols('x,y')
    assert ask(Q.bounded(x)) == False
    assert ask(Q.bounded(x), Q.bounded(x)) == True
    assert ask(Q.bounded(x), Q.bounded(y)) == False
    assert ask(Q.bounded(x), Q.complex(x)) == False

    assert ask(Q.bounded(x+1)) == False
    assert ask(Q.bounded(x+1), Q.bounded(x)) == True
    assert ask(Q.bounded(x+y)) == None
    assert ask(Q.bounded(x+y), Q.bounded(x)) == False
    assert ask(Q.bounded(x+1), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(2*x)) == False
    assert ask(Q.bounded(2*x), Q.bounded(x)) == True
    assert ask(Q.bounded(x*y)) == None
    assert ask(Q.bounded(x*y), Q.bounded(x)) == False
    assert ask(Q.bounded(x*y), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(x**2)) == False
    assert ask(Q.bounded(2**x)) == False
    assert ask(Q.bounded(2**x), Q.bounded(x)) == True
    assert ask(Q.bounded(x**x)) == False
    assert ask(Q.bounded(Rational(1,2) ** x)) == None
    assert ask(Q.bounded(Rational(1,2) ** x), Q.positive(x)) == True
    assert ask(Q.bounded(Rational(1,2) ** x), Q.negative(x)) == False
    assert ask(Q.bounded(sqrt(x))) == False

    # sign function
    assert ask(Q.bounded(sign(x))) == True
    assert ask(Q.bounded(sign(x)), ~Q.bounded(x)) == True

    # exponential functions
    assert ask(Q.bounded(log(x))) == False
    assert ask(Q.bounded(log(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(x))) == False
    assert ask(Q.bounded(exp(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(2))) == True

    # trigonometric functions
    assert ask(Q.bounded(sin(x))) == True
    assert ask(Q.bounded(sin(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(cos(x))) == True
    assert ask(Q.bounded(cos(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(2*sin(x))) == True
    assert ask(Q.bounded(sin(x)**2)) == True
    assert ask(Q.bounded(cos(x)**2)) == True
    assert ask(Q.bounded(cos(x) + sin(x))) == True
Пример #13
0
 def calc_limit(a, b):
     """replace x with a, using subs if possible, otherwise limit
     where sign of b is considered"""
     wok = inverse_mapping.subs(x, a)
     if wok is S.NaN or wok.is_bounded is False and a.is_bounded:
         return limit(sign(b)*inverse_mapping, x, a)
     return wok
Пример #14
0
def refine_Pow(expr, assumptions):
    """
    Handler for instances of Pow.

    >>> from sympy import Symbol, Assume, Q
    >>> from sympy.assumptions.refine import refine_Pow
    >>> from sympy.abc import x
    >>> refine_Pow((-1)**x, Assume(x, Q.real))
    >>> refine_Pow((-1)**x, Assume(x, Q.even))
    1
    >>> refine_Pow((-1)**x, Assume(x, Q.odd))
    -1

    """
    from sympy.core import Pow, Rational
    from sympy.functions import sign

    if ask(expr.base, Q.real, assumptions):
        if expr.base.is_number:
            if ask(expr.exp, Q.even, assumptions):
                return abs(expr.base) ** expr.exp
            if ask(expr.exp, Q.odd, assumptions):
                return sign(expr.base) * abs(expr.base) ** expr.exp
        if isinstance(expr.exp, Rational):
            if type(expr.base) is Pow:
                return abs(expr.base.base) ** (expr.base.exp * expr.exp)
Пример #15
0
def test_MpmathPrinter():
    p = MpmathPrinter()
    assert p.doprint(sign(x)) == 'mpmath.sign(x)'
    assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
    assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)'
    assert p.doprint(fresnels(x)) == 'mpmath.fresnels(x)'
    assert p.doprint(fresnelc(x)) == 'mpmath.fresnelc(x)'
Пример #16
0
def test_PythonCodePrinter():
    prntr = PythonCodePrinter()

    assert not prntr.module_imports

    assert prntr.doprint(x**y) == 'x**y'
    assert prntr.doprint(Mod(x, 2)) == 'x % 2'
    assert prntr.doprint(And(x, y)) == 'x and y'
    assert prntr.doprint(Or(x, y)) == 'x or y'
    assert not prntr.module_imports

    assert prntr.doprint(pi) == 'math.pi'
    assert prntr.module_imports == {'math': {'pi'}}

    assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
    assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
    assert prntr.module_imports == {'math': {'pi', 'sqrt'}}

    assert prntr.doprint(acos(x)) == 'math.acos(x)'
    assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
    assert prntr.doprint(Piecewise(
        (1, Eq(x, 0)),
        (2, x > 6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
    assert prntr.doprint(Piecewise((2, Le(x, 0)),
                        (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
                                                        ' (3) if (x > 0) else None)'
    assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
    assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
Пример #17
0
 def calc_limit(a, b):
     """replace x with a, using subs if possible, otherwise limit
     where sign of b is considered"""
     wok = inverse_mapping.subs(x, a)
     if wok is S.NaN or wok.is_bounded is False and a.is_bounded:
         return limit(sign(b)*inverse_mapping, x, a)
     return wok
Пример #18
0
def test_PythonCodePrinter():
    prntr = PythonCodePrinter()

    assert not prntr.module_imports

    assert prntr.doprint(x**y) == "x**y"
    assert prntr.doprint(Mod(x, 2)) == "x % 2"
    assert prntr.doprint(And(x, y)) == "x and y"
    assert prntr.doprint(Or(x, y)) == "x or y"
    assert not prntr.module_imports

    assert prntr.doprint(pi) == "math.pi"
    assert prntr.module_imports == {"math": {"pi"}}

    assert prntr.doprint(x**Rational(1, 2)) == "math.sqrt(x)"
    assert prntr.doprint(sqrt(x)) == "math.sqrt(x)"
    assert prntr.module_imports == {"math": {"pi", "sqrt"}}

    assert prntr.doprint(acos(x)) == "math.acos(x)"
    assert prntr.doprint(Assignment(x, 2)) == "x = 2"
    assert (prntr.doprint(Piecewise(
        (1, Eq(x, 0)),
        (2, x > 6))) == "((1) if (x == 0) else (2) if (x > 6) else None)")
    assert (prntr.doprint(
        Piecewise((2, Le(x, 0)), (3, Gt(x, 0)),
                  evaluate=False)) == "((2) if (x <= 0) else"
            " (3) if (x > 0) else None)")
    assert prntr.doprint(sign(x)) == "(0.0 if x == 0 else math.copysign(1, x))"
    assert prntr.doprint(p[0, 1]) == "p[0, 1]"
Пример #19
0
 def calc_limit(a, b):
     """replace x with a, using subs if possible, otherwise limit
     where sign of b is considered"""
     wok = inverse_mapping.subs(x, a)
     if not wok is S.NaN:
         return wok
     return limit(sign(b)*inverse_mapping, x, a)
Пример #20
0
def denester(nested):
    """
    Denests a list of expressions that contain nested square roots.
    This method should not be called directly - use 'sqrtdenest' instead.
    This algorithm is based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.

    It is assumed that all of the elements of 'nested' share the same
    bottom-level radicand. (This is stated in the paper, on page 177, in
    the paragraph immediately preceding the algorithm.)

    When evaluating all of the arguments in parallel, the bottom-level
    radicand only needs to be denested once. This means that calling
    denester with x arguments results in a recursive invocation with x+1
    arguments; hence denester has polynomial complexity.

    However, if the arguments were evaluated separately, each call would
    result in two recursive invocations, and the algorithm would have
    exponential complexity.

    This is discussed in the paper in the middle paragraph of page 179.
    """
    if all((n**2).is_Number for n in nested): #If none of the arguments are nested
        for f in subsets(len(nested)): #Test subset 'f' of nested
            p = prod(nested[i]**2 for i in range(len(f)) if f[i]).expand()
            if 1 in f and f.count(1) > 1 and f[-1]:
                p = -p
            if sqrt(p).is_Number:
                return sqrt(p), f #If we got a perfect square, return its square root.
        return nested[-1], [0]*len(nested) #Otherwise, return the radicand from the previous invocation.
    else:
        a, b, r, R = Wild('a'), Wild('b'), Wild('r'), None
        values = [expr.match(sqrt(a + b * sqrt(r))) for expr in nested]
        if any(v is None for v in values): # this pattern is not recognized
            return nested[-1], [0]*len(nested) #Otherwise, return the radicand from the previous invocation.
        for v in values:
            if r in v: #Since if b=0, r is not defined
                if R is not None:
                    assert R == v[r] #All the 'r's should be the same.
                else:
                    R = v[r]
        if R is None:
            return nested[-1], [0]*len(nested) #return the radicand from the previous invocation.
        d, f = denester([sqrt((v[a]**2).expand()-(R*v[b]**2).expand()) for v in values] + [sqrt(R)])
        if all(fi == 0 for fi in f):
            v = values[-1]
            return sqrt(v[a] + v[b]*d), f
        else:
            v = prod(nested[i]**2 for i in range(len(nested)) if f[i]).expand().match(a+b*sqrt(r))
            if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested)-1]:
                v[a] = -1 * v[a]
                v[b] = -1 * v[b]
            if not f[len(nested)]: #Solution denests with square roots
                vad = (v[a] + d).expand()
                if not vad:
                    return nested[-1], [0]*len(nested) #Otherwise, return the radicand from the previous invocation.
                return (sqrt(vad/2) + sign(v[b])*sqrt((v[b]**2*R/(2*vad)).expand())).expand(), f
            else: #Solution requires a fourth root
                FR, s = (R.expand()**Rational(1,4)), sqrt((v[b]*R).expand()+d)
                return (s/(sqrt(2)*FR) + v[a]*FR/(sqrt(2)*s)).expand(), f
Пример #21
0
def _sqrt_numeric_denest(a, b, r, d2):
    r"""Helper that denest
    $\sqrt{a + b \sqrt{r}}, d^2 = a^2 - b^2 r > 0$

    If it cannot be denested, it returns ``None``.
    """
    d = sqrt(d2)
    s = a + d
    # sqrt_depth(res) <= sqrt_depth(s) + 1
    # sqrt_depth(expr) = sqrt_depth(r) + 2
    # there is denesting if sqrt_depth(s) + 1 < sqrt_depth(r) + 2
    # if s**2 is Number there is a fourth root
    if sqrt_depth(s) < sqrt_depth(r) + 1 or (s**2).is_Rational:
        s1, s2 = sign(s), sign(b)
        if s1 == s2 == -1:
            s1 = s2 = 1
        res = (s1 * sqrt(a + d) + s2 * sqrt(a - d)) * sqrt(2) / 2
        return res.expand()
Пример #22
0
 def _calc_limit_1(F, a, b):
     """
     replace d with a, using subs if possible, otherwise limit
     where sign of b is considered
     """
     wok = F.subs(d, a)
     if wok is S.NaN or wok.is_bounded is False and a.is_bounded:
         return limit(sign(b) * F, d, a)
     return wok
Пример #23
0
 def _calc_limit_1(F, a, b):
     """
     replace d with a, using subs if possible, otherwise limit
     where sign of b is considered
     """
     wok = F.subs(d, a)
     if wok is S.NaN or wok.is_bounded is False and a.is_bounded:
         return limit(sign(b)*F, d, a)
     return wok
Пример #24
0
    def p_parameter(self):
        """P is a parameter of parabola.

        Returns
        =======

        p : number or symbolic expression

        Notes
        =====

        The absolute value of p is the focal length. The sign on p tells
        which way the parabola faces. Vertical parabolas that open up
        and horizontal that open right, give a positive value for p.
        Vertical parabolas that open down and horizontal that open left,
        give a negative value for p.


        See Also
        ========

        http://www.sparknotes.com/math/precalc/conicsections/section2.rhtml

        Examples
        ========

        >>> from sympy import Parabola, Point, Line
        >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
        >>> p1.p_parameter
        -4

        """
        m = self.directrix.slope
        if m is S.Infinity:
            x = self.directrix.coefficients[2]
            p = sign(self.focus.args[0] + x)
        elif m == 0:
            y = self.directrix.coefficients[2]
            p = sign(self.focus.args[1] + y)
        else:
            d = self.directrix.projection(self.focus)
            p = sign(self.focus.x - d.x)
        return p * self.focal_length
Пример #25
0
def test_MpmathPrinter():
    p = MpmathPrinter()
    assert p.doprint(sign(x)) == 'mpmath.sign(x)'
    assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'

    assert p.doprint(S.Exp1) == 'mpmath.e'
    assert p.doprint(S.Pi) == 'mpmath.pi'
    assert p.doprint(S.GoldenRatio) == 'mpmath.phi'
    assert p.doprint(S.EulerGamma) == 'mpmath.euler'
    assert p.doprint(S.NaN) == 'mpmath.nan'
    assert p.doprint(S.Infinity) == 'mpmath.inf'
    assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf'
Пример #26
0
    def p_parameter(self):
        """P is a parameter of parabola.

        Returns
        =======

        p : number or symbolic expression

        Notes
        =====

        The absolute value of p is the focal length. The sign on p tells
        which way the parabola faces. Vertical parabolas that open up
        and horizontal that open right, give a positive value for p.
        Vertical parabolas that open down and horizontal that open left,
        give a negative value for p.


        See Also
        ========

        http://www.sparknotes.com/math/precalc/conicsections/section2.rhtml

        Examples
        ========

        >>> from sympy import Parabola, Point, Line
        >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
        >>> p1.p_parameter
        -4

        """
        if self.axis_of_symmetry.slope == 0:
            x = self.directrix.coefficients[2]
            p = sign(self.focus.args[0] + x)
        else:
            y = self.directrix.coefficients[2]
            p = sign(self.focus.args[1] + y)
        return p * self.focal_length
Пример #27
0
def test_Function():
    assert mcode(sin(x)**cos(x)) == "sin(x).^cos(x)"
    assert mcode(sign(x)) == "sign(x)"
    assert mcode(exp(x)) == "exp(x)"
    assert mcode(log(x)) == "log(x)"
    assert mcode(factorial(x)) == "factorial(x)"
    assert mcode(floor(x)) == "floor(x)"
    assert mcode(atan2(y, x)) == "atan2(y, x)"
    assert mcode(beta(x, y)) == 'beta(x, y)'
    assert mcode(polylog(x, y)) == 'polylog(x, y)'
    assert mcode(harmonic(x)) == 'harmonic(x)'
    assert mcode(bernoulli(x)) == "bernoulli(x)"
    assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
Пример #28
0
def test_Function():
    assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
    assert mcode(sign(x)) == "sign(x)"
    assert mcode(exp(x)) == "exp(x)"
    assert mcode(log(x)) == "log(x)"
    assert mcode(factorial(x)) == "factorial(x)"
    assert mcode(floor(x)) == "floor(x)"
    assert mcode(atan2(y, x)) == "atan2(y, x)"
    assert mcode(beta(x, y)) == 'beta(x, y)'
    assert mcode(polylog(x, y)) == 'polylog(x, y)'
    assert mcode(harmonic(x)) == 'harmonic(x)'
    assert mcode(bernoulli(x)) == "bernoulli(x)"
    assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
Пример #29
0
def test_NumPyPrinter():
    from sympy import (
        Lambda,
        ZeroMatrix,
        OneMatrix,
        FunctionMatrix,
        HadamardProduct,
        KroneckerProduct,
        Adjoint,
        DiagonalOf,
        DiagMatrix,
        DiagonalMatrix,
    )
    from sympy.abc import a, b

    p = NumPyPrinter()
    assert p.doprint(sign(x)) == "numpy.sign(x)"
    A = MatrixSymbol("A", 2, 2)
    B = MatrixSymbol("B", 2, 2)
    C = MatrixSymbol("C", 1, 5)
    D = MatrixSymbol("D", 3, 4)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
    assert p.doprint(Identity(3)) == "numpy.eye(3)"

    u = MatrixSymbol("x", 2, 1)
    v = MatrixSymbol("y", 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == "numpy.linalg.solve(A, x)"
    assert p.doprint(MatrixSolve(A, u) + v) == "numpy.linalg.solve(A, x) + y"

    assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
    assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
    assert (p.doprint(FunctionMatrix(4, 5, Lambda(
        (a, b), a + b))) == "numpy.fromfunction(lambda a, b: a + b, (4, 5))")
    assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
    assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
    assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
    assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
    assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
    assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"

    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == "x**(-1.0)"
    assert p.doprint(x**-2) == "x**(-2.0)"

    assert p.doprint(S.Exp1) == "numpy.e"
    assert p.doprint(S.Pi) == "numpy.pi"
    assert p.doprint(S.EulerGamma) == "numpy.euler_gamma"
    assert p.doprint(S.NaN) == "numpy.nan"
    assert p.doprint(S.Infinity) == "numpy.PINF"
    assert p.doprint(S.NegativeInfinity) == "numpy.NINF"
Пример #30
0
def test_NumPyPrinter():
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
    A = MatrixSymbol("A", 2, 2)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"

    u = MatrixSymbol('x', 2, 1)
    v = MatrixSymbol('y', 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
    assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == 'x**(-1.0)'
    assert p.doprint(x**-2) == 'x**(-2.0)'
Пример #31
0
def test_NumPyPrinter():
    from sympy.core.function import Lambda
    from sympy.matrices.expressions.adjoint import Adjoint
    from sympy.matrices.expressions.diagonal import (DiagMatrix,
                                                     DiagonalMatrix,
                                                     DiagonalOf)
    from sympy.matrices.expressions.funcmatrix import FunctionMatrix
    from sympy.matrices.expressions.hadamard import HadamardProduct
    from sympy.matrices.expressions.kronecker import KroneckerProduct
    from sympy.matrices.expressions.special import (OneMatrix, ZeroMatrix)
    from sympy.abc import a, b
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
    A = MatrixSymbol("A", 2, 2)
    B = MatrixSymbol("B", 2, 2)
    C = MatrixSymbol("C", 1, 5)
    D = MatrixSymbol("D", 3, 4)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
    assert p.doprint(Identity(3)) == "numpy.eye(3)"

    u = MatrixSymbol('x', 2, 1)
    v = MatrixSymbol('y', 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
    assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'

    assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
    assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
    assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
        "numpy.fromfunction(lambda a, b: a + b, (4, 5))"
    assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
    assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
    assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
    assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
    assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
    assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"

    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == 'x**(-1.0)'
    assert p.doprint(x**-2) == 'x**(-2.0)'

    expr = Pow(2, -1, evaluate=False)
    assert p.doprint(expr) == "2**(-1.0)"

    assert p.doprint(S.Exp1) == 'numpy.e'
    assert p.doprint(S.Pi) == 'numpy.pi'
    assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
    assert p.doprint(S.NaN) == 'numpy.nan'
    assert p.doprint(S.Infinity) == 'numpy.PINF'
    assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
Пример #32
0
def fits_in(unit, dimension, reciprocal):
    """
	Checks if unit fits in given dimension
	(just for use inside this module)

	Args:
	 - unit
	 - dimension
	 - reciprocal: 1 or -1 to show if unit is supposed to be fitted in as reciprocal or not
	"""
    assert isinstance(unit, Unit)
    assert isinstance(dimension, Dimension)
    assert reciprocal is S.One or reciprocal is S.NegativeOne

    for lookAtThis, unitExp in unit.dim.items():
        dimExp = dimension.get(lookAtThis, 0)
        if not unitExp == 0:
            if not sign(unitExp) == sign(dimExp * reciprocal):
                return False
            if not abs(unitExp) <= abs(dimExp):
                return False

    return True
Пример #33
0
def _sqrt_numeric_denest(a, b, r, d2):
    """Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0
    or returns None if not denested.
    """
    from sympy.simplify.simplify import radsimp
    depthr = sqrt_depth(r)
    d = sqrt(d2)
    vad = a + d
    # sqrt_depth(res) <= sqrt_depth(vad) + 1
    # sqrt_depth(expr) = depthr + 2
    # there is denesting if sqrt_depth(vad)+1 < depthr + 2
    # if vad**2 is Number there is a fourth root
    if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational:
        vad1 = radsimp(1/vad)
        return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand()
Пример #34
0
def _sqrt_numeric_denest(a, b, r, d2):
    """Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0
    or returns None if not denested.
    """
    from sympy.simplify.simplify import radsimp
    depthr = sqrt_depth(r)
    d = sqrt(d2)
    vad = a + d
    # sqrt_depth(res) <= sqrt_depth(vad) + 1
    # sqrt_depth(expr) = depthr + 2
    # there is denesting if sqrt_depth(vad)+1 < depthr + 2
    # if vad**2 is Number there is a fourth root
    if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational:
        vad1 = radsimp(1/vad)
        return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand()
Пример #35
0
def test_PythonCodePrinter():
    prntr = PythonCodePrinter()
    assert not prntr.module_imports
    assert prntr.doprint(x**y) == 'x**y'
    assert prntr.doprint(Mod(x, 2)) == 'x % 2'
    assert prntr.doprint(And(x, y)) == 'x and y'
    assert prntr.doprint(Or(x, y)) == 'x or y'
    assert not prntr.module_imports
    assert prntr.doprint(pi) == 'math.pi'
    assert prntr.module_imports == {'math': {'pi'}}
    assert prntr.doprint(acos(x)) == 'math.acos(x)'
    assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
    assert prntr.doprint(Piecewise((1, Eq(x, 0)),
                        (2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
    assert prntr.doprint(Piecewise((2, Le(x, 0)),
                        (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
                                                        ' (3) if (x > 0) else None)'
    assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
Пример #36
0
def test_NumPyPrinter():
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
    A = MatrixSymbol("A", 2, 2)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
    assert p.doprint(Identity(3)) == "numpy.eye(3)"

    u = MatrixSymbol('x', 2, 1)
    v = MatrixSymbol('y', 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
    assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == 'x**(-1.0)'
    assert p.doprint(x**-2) == 'x**(-2.0)'

    assert p.doprint(S.Exp1) == 'numpy.e'
    assert p.doprint(S.Pi) == 'numpy.pi'
    assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
    assert p.doprint(S.NaN) == 'numpy.nan'
    assert p.doprint(S.Infinity) == 'numpy.PINF'
    assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
Пример #37
0
def refine_Pow(expr, assumptions):
    """
    Handler for instances of Pow.

    >>> from sympy import Symbol, Q
    >>> from sympy.assumptions.refine import refine_Pow
    >>> from sympy.abc import x,y,z
    >>> refine_Pow((-1)**x, Q.real(x))
    >>> refine_Pow((-1)**x, Q.even(x))
    1
    >>> refine_Pow((-1)**x, Q.odd(x))
    -1

    For powers of -1, even parts of the exponent can be simplified:

    >>> refine_Pow((-1)**(x+y), Q.even(x))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+2), Q.odd(x))
    (-1)**(y + 1)
    >>> refine_Pow((-1)**(x+3), True)
    (-1)**(x + 1)

    """
    from sympy.core import Pow, Rational
    from sympy.functions.elementary.complexes import Abs
    from sympy.functions import sign
    if isinstance(expr.base, Abs):
        if ask(Q.real(expr.base.args[0]), assumptions) and \
                ask(Q.even(expr.exp), assumptions):
            return expr.base.args[0]**expr.exp
    if ask(Q.real(expr.base), assumptions):
        if expr.base.is_number:
            if ask(Q.even(expr.exp), assumptions):
                return abs(expr.base)**expr.exp
            if ask(Q.odd(expr.exp), assumptions):
                return sign(expr.base) * abs(expr.base)**expr.exp
        if isinstance(expr.exp, Rational):
            if type(expr.base) is Pow:
                return abs(expr.base.base)**(expr.base.exp * expr.exp)

        if expr.base is S.NegativeOne:
            if expr.exp.is_Add:

                old = expr

                # For powers of (-1) we can remove
                #  - even terms
                #  - pairs of odd terms
                #  - a single odd term + 1
                #  - A numerical constant N can be replaced with mod(N,2)

                coeff, terms = expr.exp.as_coeff_add()
                terms = set(terms)
                even_terms = set([])
                odd_terms = set([])
                initial_number_of_terms = len(terms)

                for t in terms:
                    if ask(Q.even(t), assumptions):
                        even_terms.add(t)
                    elif ask(Q.odd(t), assumptions):
                        odd_terms.add(t)

                terms -= even_terms
                if len(odd_terms) % 2:
                    terms -= odd_terms
                    new_coeff = (coeff + S.One) % 2
                else:
                    terms -= odd_terms
                    new_coeff = coeff % 2

                if new_coeff != coeff or len(terms) < initial_number_of_terms:
                    terms.add(new_coeff)
                    expr = expr.base**(Add(*terms))

                # Handle (-1)**((-1)**n/2 + m/2)
                e2 = 2 * expr.exp
                if ask(Q.even(e2), assumptions):
                    if e2.could_extract_minus_sign():
                        e2 *= expr.base
                if e2.is_Add:
                    i, p = e2.as_two_terms()
                    if p.is_Pow and p.base is S.NegativeOne:
                        if ask(Q.integer(p.exp), assumptions):
                            i = (i + 1) / 2
                            if ask(Q.even(i), assumptions):
                                return expr.base**p.exp
                            elif ask(Q.odd(i), assumptions):
                                return expr.base**(p.exp + 1)
                            else:
                                return expr.base**(p.exp + i)

                if old != expr:
                    return expr
Пример #38
0
def test_NumPyPrinter():
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
    A = MatrixSymbol("A", 2, 2)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
Пример #39
0
 def sqrtofsqrtsimp_(a=0, b=0, c=0): # 1/sqrt(a + b*sqrt(c))
     q = sqrt(a**2 - b**2*c)
     if not q.is_Rational:
         return None
     return 1/(sqrt((a+q)/2) + sign(b)*sqrt((a-q)/2))
Пример #40
0
def refine_Pow(expr, assumptions):
    """
    Handler for instances of Pow.

    >>> from sympy import Symbol, Q
    >>> from sympy.assumptions.refine import refine_Pow
    >>> from sympy.abc import x,y,z
    >>> refine_Pow((-1)**x, Q.real(x))
    >>> refine_Pow((-1)**x, Q.even(x))
    1
    >>> refine_Pow((-1)**x, Q.odd(x))
    -1

    For powers of -1, even parts of the exponent can be simplified:

    >>> refine_Pow((-1)**(x+y), Q.even(x))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+2), Q.odd(x))
    (-1)**(y + 1)
    >>> refine_Pow((-1)**(x+3), True)
    (-1)**(x + 1)

    """
    from sympy.core import Pow, Rational
    from sympy.functions import sign
    if ask(Q.real(expr.base), assumptions):
        if expr.base.is_number:
            if ask(Q.even(expr.exp), assumptions):
                return abs(expr.base) ** expr.exp
            if ask(Q.odd(expr.exp), assumptions):
                return sign(expr.base) * abs(expr.base) ** expr.exp
        if isinstance(expr.exp, Rational):
            if type(expr.base) is Pow:
                return abs(expr.base.base) ** (expr.base.exp * expr.exp)

        if expr.base is S.NegativeOne:
            if expr.exp.is_Add:

                # For powers of (-1) we can remove
                #  - even terms
                #  - pairs of odd terms
                #  - a single odd term + 1
                #  - A numerical constant N can be replaced with mod(N,2)

                coeff, terms = expr.exp.as_coeff_add()
                terms = set(terms)
                even_terms = set([])
                odd_terms = set([])
                initial_number_of_terms = len(terms)

                for t in terms:
                    if ask(Q.even(t), assumptions):
                        even_terms.add(t)
                    elif ask(Q.odd(t), assumptions):
                        odd_terms.add(t)

                terms -= even_terms
                if len(odd_terms)%2:
                    terms -= odd_terms
                    new_coeff = (coeff + S.One) % 2
                else:
                    terms -= odd_terms
                    new_coeff = coeff % 2

                if new_coeff != coeff or len(terms) < initial_number_of_terms:
                    terms.add(new_coeff)
                    return expr.base**(Add(*terms))
Пример #41
0
def _denester(nested, av0, h, max_depth_level):
    """Denests a list of expressions that contain nested square roots.

    Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.

    It is assumed that all of the elements of 'nested' share the same
    bottom-level radicand. (This is stated in the paper, on page 177, in
    the paragraph immediately preceding the algorithm.)

    When evaluating all of the arguments in parallel, the bottom-level
    radicand only needs to be denested once. This means that calling
    _denester with x arguments results in a recursive invocation with x+1
    arguments; hence _denester has polynomial complexity.

    However, if the arguments were evaluated separately, each call would
    result in two recursive invocations, and the algorithm would have
    exponential complexity.

    This is discussed in the paper in the middle paragraph of page 179.
    """
    from sympy.simplify.simplify import radsimp
    if h > max_depth_level:
        return None, None
    if av0[1] is None:
        return None, None
    if (av0[0] is None and
        all(n.is_Number for n in nested)): # no arguments are nested
        for f in subsets(len(nested)): # test subset 'f' of nested
            p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
            if f.count(1) > 1 and f[-1]:
                p = -p
            sqp = sqrt(p)
            if sqp.is_Rational:
                return sqp, f # got a perfect square so return its square root.
        # Otherwise, return the radicand from the previous invocation.
        return sqrt(nested[-1]), [0]*len(nested)
    else:
        R = None
        if av0[0] is not None:
            values = [av0[:2]]
            R = av0[2]
            nested2 = [av0[3], R]
            av0[0] = None
        else:
            values = filter(None, [_sqrt_match(expr) for expr in nested])
            for v in values:
                if v[2]: #Since if b=0, r is not defined
                    if R is not None:
                        if R != v[2]:
                            av0[1] = None
                            return None, None
                    else:
                        R = v[2]
            if R is None:
                # return the radicand from the previous invocation
                return sqrt(nested[-1]), [0]*len(nested)
            nested2 = [_mexpand(v[0]**2) -
                       _mexpand(R*v[1]**2) for v in values] + [R]
        d, f = _denester(nested2, av0, h + 1, max_depth_level)
        if not f:
            return None, None
        if not any(f[i] for i in range(len(nested))):
            v = values[-1]
            return sqrt(v[0] + v[1]*d), f
        else:
            p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
            v = _sqrt_match(p)
            if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
                v[0] = -v[0]
                v[1] = -v[1]
            if not f[len(nested)]: #Solution denests with square roots
                vad = _mexpand(v[0] + d)
                if vad <= 0:
                    # return the radicand from the previous invocation.
                    return sqrt(nested[-1]), [0]*len(nested)
                if not(sqrt_depth(vad) < sqrt_depth(R) + 1 or
                       (vad**2).is_Number):
                    av0[1] = None
                    return None, None

                vad1 = radsimp(1/vad)
                return _mexpand(sqrt(vad/2) +
                                sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
            else: #Solution requires a fourth root
                s2 = _mexpand(v[1]*R) + d
                if s2 <= 0:
                    return sqrt(nested[-1]), [0]*len(nested)
                FR, s = root(_mexpand(R), 4), sqrt(s2)
                return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f
Пример #42
0
def trpzs2aff(tvec=zeros3, rquat=Mat([1,0,0,0]), parity=1, zfac=ones3, stri=zeros3):
    mat = rquat2rmat(rquat) * sign(parity) * zfac2zmat(zfac) * stri2smat(stri)
    return augment(mat, tvec)
Пример #43
0
 def __new__(cls, tvec=zeros3, rquat=Mat([1,0,0,0]), parity=1):
     tvec = Mat(tvec)
     rquat = Mat(rquat)
     parity = sign(parity)
     return Functor.__new__(cls, tvec, rquat, parity)
Пример #44
0
def refine_Pow(expr, assumptions):
    """
    Handler for instances of Pow.

    >>> from sympy import Symbol, Q
    >>> from sympy.assumptions.refine import refine_Pow
    >>> from sympy.abc import x,y,z
    >>> refine_Pow((-1)**x, Q.real(x))
    >>> refine_Pow((-1)**x, Q.even(x))
    1
    >>> refine_Pow((-1)**x, Q.odd(x))
    -1

    For powers of -1, even parts of the exponent can be simplified:

    >>> refine_Pow((-1)**(x+y), Q.even(x))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+2), Q.odd(x))
    (-1)**(y + 1)
    >>> refine_Pow((-1)**(x+3), True)
    (-1)**(x + 1)

    """
    from sympy.core import Pow, Rational
    from sympy.functions.elementary.complexes import Abs
    from sympy.functions import sign
    if isinstance(expr.base, Abs):
        if ask(Q.real(expr.base.args[0]), assumptions) and \
                ask(Q.even(expr.exp), assumptions):
            return expr.base.args[0] ** expr.exp
    if ask(Q.real(expr.base), assumptions):
        if expr.base.is_number:
            if ask(Q.even(expr.exp), assumptions):
                return abs(expr.base) ** expr.exp
            if ask(Q.odd(expr.exp), assumptions):
                return sign(expr.base) * abs(expr.base) ** expr.exp
        if isinstance(expr.exp, Rational):
            if type(expr.base) is Pow:
                return abs(expr.base.base) ** (expr.base.exp * expr.exp)

        if expr.base is S.NegativeOne:
            if expr.exp.is_Add:

                old = expr

                # For powers of (-1) we can remove
                #  - even terms
                #  - pairs of odd terms
                #  - a single odd term + 1
                #  - A numerical constant N can be replaced with mod(N,2)

                coeff, terms = expr.exp.as_coeff_add()
                terms = set(terms)
                even_terms = set([])
                odd_terms = set([])
                initial_number_of_terms = len(terms)

                for t in terms:
                    if ask(Q.even(t), assumptions):
                        even_terms.add(t)
                    elif ask(Q.odd(t), assumptions):
                        odd_terms.add(t)

                terms -= even_terms
                if len(odd_terms) % 2:
                    terms -= odd_terms
                    new_coeff = (coeff + S.One) % 2
                else:
                    terms -= odd_terms
                    new_coeff = coeff % 2

                if new_coeff != coeff or len(terms) < initial_number_of_terms:
                    terms.add(new_coeff)
                    expr = expr.base**(Add(*terms))

                # Handle (-1)**((-1)**n/2 + m/2)
                e2 = 2*expr.exp
                if ask(Q.even(e2), assumptions):
                    if e2.could_extract_minus_sign():
                        e2 *= expr.base
                if e2.is_Add:
                    i, p = e2.as_two_terms()
                    if p.is_Pow and p.base is S.NegativeOne:
                        if ask(Q.integer(p.exp), assumptions):
                            i = (i + 1)/2
                            if ask(Q.even(i), assumptions):
                                return expr.base**p.exp
                            elif ask(Q.odd(i), assumptions):
                                return expr.base**(p.exp + 1)
                            else:
                                return expr.base**(p.exp + i)

                if old != expr:
                    return expr
Пример #45
0
def test_MpmathPrinter():
    p = MpmathPrinter()
    assert p.doprint(sign(x)) == 'mpmath.sign(x)'
Пример #46
0
def test_MpmathPrinter():
    p = MpmathPrinter()
    assert p.doprint(sign(x)) == 'mpmath.sign(x)'
    assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
Пример #47
0
def SuperellipseYZ(n, a, b):
    x = (Abs(cos(v)) ** (2/n)) * a * sign(cos(v))
    y = (Abs(sin(v)) ** (2/n)) * b * sign(sin(v))
    return VVF(0, -x, y)
Пример #48
0
def test_MpmathPrinter():
    p = MpmathPrinter()
    assert p.doprint(sign(x)) == 'mpmath.sign(x)'
    assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
Пример #49
0
def test_NumPyPrinter():
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
N = 15  # número de términos en la suma
#step_approx=lambdify(x,Sum(A(m).doit()*sp.legendre(2*m+1,x),(m,0,N)).doit(),"numpy")
step_approx = lambdify(
    x,
    Sum(A(m).evalf() * sp.legendre(2 * m + 1, x), (m, 0, N)).doit(), "numpy")

#Sum es una función de sympy. Recordar que m es un símbolo que también importamos desde simpy.
#Un ejemplo para entender la expresión de arriba es
from sympy.abc import p  #notar que ya importamos m antes
Sum(p, (p, 0, 3))
print(Sum(p, (p, 0, 3)))

## Graficamos la aproximación y comparamos con la solución exacta. Note que si ponemos muchos términos la solución no converge.

fig = mpl.figure(figsize=(10, 10))
step = lambdify(x, sp.sign(x), "numpy")
f_vals = step(x_vals)
mpl.plot(x_vals, f_vals, color="k", label="Exact")
for N in [5, 15, 25]:
    x_vals = np.linspace(-1, 1, 200)
    step_approx = lambdify(
        x,
        Sum(A(m).evalf() * sp.legendre(2 * m + 1, x), (m, 0, N)).doit(),
        "numpy")
    z_vals = step_approx(x_vals)
    mpl.plot(x_vals, z_vals, label=f"N = {N:d}")
    mpl.ylabel("step")

mpl.ylim(-2, 2)  #seteamos los límites del ploteo
mpl.legend()  #para ver los labels
# mpl.show()
Пример #51
0
def Jump(x,x_i,Xi):
    return 1./2.*(sign(x-Xi)-sign(x_i-Xi))
Пример #52
0
def test_tensorflow_math():
    if not tf:
        skip("TensorFlow not installed")

    expr = Abs(x)
    assert tensorflow_code(expr) == "tensorflow.math.abs(x)"
    _compare_tensorflow_scalar((x, ), expr)

    expr = sign(x)
    assert tensorflow_code(expr) == "tensorflow.math.sign(x)"
    _compare_tensorflow_scalar((x, ), expr)

    expr = ceiling(x)
    assert tensorflow_code(expr) == "tensorflow.math.ceil(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = floor(x)
    assert tensorflow_code(expr) == "tensorflow.math.floor(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = exp(x)
    assert tensorflow_code(expr) == "tensorflow.math.exp(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = sqrt(x)
    assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = x**4
    assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = cos(x)
    assert tensorflow_code(expr) == "tensorflow.math.cos(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = acos(x)
    assert tensorflow_code(expr) == "tensorflow.math.acos(x)"
    _compare_tensorflow_scalar((x, ),
                               expr,
                               rng=lambda: random.uniform(0, 0.95))

    expr = sin(x)
    assert tensorflow_code(expr) == "tensorflow.math.sin(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = asin(x)
    assert tensorflow_code(expr) == "tensorflow.math.asin(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = tan(x)
    assert tensorflow_code(expr) == "tensorflow.math.tan(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = atan(x)
    assert tensorflow_code(expr) == "tensorflow.math.atan(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = atan2(y, x)
    assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)"
    _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random())

    expr = cosh(x)
    assert tensorflow_code(expr) == "tensorflow.math.cosh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = acosh(x)
    assert tensorflow_code(expr) == "tensorflow.math.acosh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = sinh(x)
    assert tensorflow_code(expr) == "tensorflow.math.sinh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = asinh(x)
    assert tensorflow_code(expr) == "tensorflow.math.asinh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = tanh(x)
    assert tensorflow_code(expr) == "tensorflow.math.tanh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = atanh(x)
    assert tensorflow_code(expr) == "tensorflow.math.atanh(x)"
    _compare_tensorflow_scalar((x, ),
                               expr,
                               rng=lambda: random.uniform(-.5, .5))

    expr = erf(x)
    assert tensorflow_code(expr) == "tensorflow.math.erf(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = loggamma(x)
    assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())
Пример #53
0
def _denester(nested, av0, h, max_depth_level):
    """Denests a list of expressions that contain nested square roots.

    Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.

    It is assumed that all of the elements of 'nested' share the same
    bottom-level radicand. (This is stated in the paper, on page 177, in
    the paragraph immediately preceding the algorithm.)

    When evaluating all of the arguments in parallel, the bottom-level
    radicand only needs to be denested once. This means that calling
    _denester with x arguments results in a recursive invocation with x+1
    arguments; hence _denester has polynomial complexity.

    However, if the arguments were evaluated separately, each call would
    result in two recursive invocations, and the algorithm would have
    exponential complexity.

    This is discussed in the paper in the middle paragraph of page 179.
    """
    from sympy.simplify.simplify import radsimp
    if h > max_depth_level:
        return None, None
    if av0[1] is None:
        return None, None
    if (av0[0] is None
            and all(n.is_Number for n in nested)):  # no arguments are nested
        for f in subsets(len(nested)):  # test subset 'f' of nested
            p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
            if f.count(1) > 1 and f[-1]:
                p = -p
            sqp = sqrt(p)
            if sqp.is_Rational:
                return sqp, f  # got a perfect square so return its square root.
        # Otherwise, return the radicand from the previous invocation.
        return sqrt(nested[-1]), [0] * len(nested)
    else:
        R = None
        if av0[0] is not None:
            values = [av0[:2]]
            R = av0[2]
            nested2 = [av0[3], R]
            av0[0] = None
        else:
            values = filter(None, [_sqrt_match(expr) for expr in nested])
            for v in values:
                if v[2]:  #Since if b=0, r is not defined
                    if R is not None:
                        if R != v[2]:
                            av0[1] = None
                            return None, None
                    else:
                        R = v[2]
            if R is None:
                # return the radicand from the previous invocation
                return sqrt(nested[-1]), [0] * len(nested)
            nested2 = [
                _mexpand(v[0]**2) - _mexpand(R * v[1]**2) for v in values
            ] + [R]
        d, f = _denester(nested2, av0, h + 1, max_depth_level)
        if not f:
            return None, None
        if not any(f[i] for i in range(len(nested))):
            v = values[-1]
            return sqrt(v[0] + v[1] * d), f
        else:
            p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
            v = _sqrt_match(p)
            if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
                v[0] = -v[0]
                v[1] = -v[1]
            if not f[len(nested)]:  #Solution denests with square roots
                vad = _mexpand(v[0] + d)
                if vad <= 0:
                    # return the radicand from the previous invocation.
                    return sqrt(nested[-1]), [0] * len(nested)
                if not (sqrt_depth(vad) < sqrt_depth(R) + 1 or
                        (vad**2).is_Number):
                    av0[1] = None
                    return None, None

                vad1 = radsimp(1 / vad)
                return _mexpand(
                    sqrt(vad / 2) +
                    sign(v[1]) * sqrt(_mexpand(v[1]**2 * R * vad1 / 2))), f
            else:  #Solution requires a fourth root
                s2 = _mexpand(v[1] * R) + d
                if s2 <= 0:
                    return sqrt(nested[-1]), [0] * len(nested)
                FR, s = root(_mexpand(R), 4), sqrt(s2)
                return _mexpand(s / (sqrt(2) * FR) + v[0] * FR /
                                (sqrt(2) * s)), f
Пример #54
0
def test_NumPyPrinter():
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'