def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex() # ensure convex for both CW and CCW point specification dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) == None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) == False assert p5.encloses_point(Point(4, 0)) == False p5.plot_interval("x") == [x, 0, 1] assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance(Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 raises( UserWarning, lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(Polygon(Point(0, 0), Point(0, 1), Point(1, 1))), ) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point("t").subs(Symbol("t", real=True), 0) == Point(0, 0) raises(ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point("x")) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) == False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1.vertices[0] == Point(5, 5 * sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5)) assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8) assert p1.scale(2, 2) == RegularPolygon(p1.center, p1.radius * 2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert ` p1 ` == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False assert t1.is_similar(Point(0, 0)) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6 assert t3.inradius == t3.incircle.radius == x1 ** 2 / ((2 + sqrt(2)) * Abs(x1)) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S( """Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))""" ) assert t.orthocenter == S( """Point(-780660869050599840216997""" """79471538701955848721853/80368430960602242240789074233100000000000000,""" """20151573611150265741278060334545897615974257/16073686192120448448157""" """8148466200000000000)""" ) # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4) ) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) pt1 = Point(half, half) pt2 = Point(1, 1) """Polygon to Point""" assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2
def test_polygon(): p1 = Polygon( Point(0, 0), Point(3,-1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3,-1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == Rational(6) assert len(p1.sides) == 6 assert p1.perimeter == 5+2*sqrt(10)+sqrt(29)+sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex() # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3*pi/5 assert p1.exterior_angle == 2*pi/5 assert p2.apothem == 5*cos(pi/5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5,2), sqrt(Rational(75,4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides s2 = t2.sides s3 = t3.sides # Basic stuff assert t1.area == Rational(25,2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors assert bisectors[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) ic = (250 - 125*sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5*2**(S(1)/2)/2 assert t2.inradius == 5*3**(S(1)/2)/6 assert t3.inradius == (2*x1**2*Abs(x1) - 2**(S(1)/2)*x1**2*Abs(x1))/(2*x1**2) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5,3), Rational(5,3)) assert m[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) p5 = Polygon( Point(half, 3**(half)/2), Point(-half, 3**(half)/2), Point(-1, 0), Point(-half, -(3)**(half)/2), Point(half, -(3)**(half)/2), Point(1, 0)) p6 = Polygon(Point(2, Rational(3)/10), Point(Rational(17)/10, 0), Point(2, -Rational(3)/10), Point(Rational(23)/10, 0)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2) assert p5.distance(p6) == Rational(7)/10
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4)) # # General polygon # assert p1 == p2 assert len(p1) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex( ) # ensure convex for both CW and CCW point specification dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) == None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) == False assert p5.encloses_point(Point(4, 0)) == False p5.plot_interval('x') == [x, 0, 1] assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 raises( UserWarning, 'Polygon(Point(0, 0), Point(1, 0), Point(1,1)).distance(Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))' ) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == Point(0, 0) raises( ValueError, "Polygon(Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')") # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, 'RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))') raises(GeometryError, 'RegularPolygon(Point(0, 0), 1, 2)') assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) == False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1[0] == Point(5, 5 * sqrt(3)) for var in p1: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 raises(IndexError, 'RegularPolygon(Point(0, 0), 1, 3)[4]') # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old assert ` p1 ` == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, 'Triangle(Point(0, 0))') # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False assert t1.is_similar(Point(0, 0)) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6 assert t3.inradius == t3.incircle.radius == x1**2 / ( (2 + sqrt(2)) * Abs(x1)) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex() # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides s2 = t2.sides s3 = t3.sides # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == 5 * sqrt(3) / 6 assert t3.inradius == x1 ** 2 / ((2 + sqrt(2)) * Abs(x1)) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4) ) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) p5 = Polygon( Point(half, 3 ** (half) / 2), Point(-half, 3 ** (half) / 2), Point(-1, 0), Point(-half, -(3) ** (half) / 2), Point(half, -(3) ** (half) / 2), Point(1, 0), ) p6 = Polygon( Point(2, Rational(3) / 10), Point(Rational(17) / 10, 0), Point(2, -Rational(3) / 10), Point(Rational(23) / 10, 0), ) pt1 = Point(half, half) pt2 = Point(1, 1) """Polygon to Point""" assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2 """Polygon to Polygon""" import warnings # p1.distance(p2) emits a warning # First, test the warning warnings.filterwarnings("error", "Polygons may intersect producing erroneous output") raises(UserWarning, "p1.distance(p2)") # now test the actual output warnings.filterwarnings("ignore", "Polygons may intersect producing erroneous output") assert p1.distance(p2) == half / 2 # Keep testing reasonably thread safe, so reset the warning warnings.filterwarnings("default", "Polygons may intersect producing erroneous output") # Note, in Python 2.6+, this can be done more nicely using the # warnings.catch_warnings context manager. # See http://docs.python.org/library/warnings#testing-warnings. assert p1.distance(p3) == sqrt(2) / 2 assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2) assert p5.distance(p6) == Rational(7) / 10
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon( Point(0, 0), Point(3,-1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3,-1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5+2*sqrt(10)+sqrt(29)+sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex() # ensure convex for both CW and CCW point specification dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) == None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) == False assert p5.encloses_point(Point(4, 0)) == False p5.plot_interval('x') == [x, 0, 1] assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance(Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 raises(UserWarning, 'Polygon(Point(0, 0), Point(1, 0), Point(1,1)).distance(Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))') assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == Point(0, 0) raises(ValueError, "Polygon(Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')") # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, 'RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))') raises(GeometryError, 'RegularPolygon(Point(0, 0), 1, 2)') raises(ValueError, 'RegularPolygon(Point(0, 0), 1, 2.5)') assert p1 != p2 assert p1.interior_angle == 3*pi/5 assert p1.exterior_angle == 2*pi/5 assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) == False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3) assert p1 == p1_old assert `p1` == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5,2), sqrt(Rational(75,4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, 'Triangle(Point(0, 0))') # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25,2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False assert t1.is_similar(Point(0, 0)) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) ic = (250 - 125*sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5,3), Rational(5,3)) assert m[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2
def test_polygon(): p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == Rational(6) assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex( ) # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides s2 = t2.sides s3 = t3.sides # Basic stuff assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5 * 2**(S(1) / 2) / 2 assert t2.inradius == 5 * 3**(S(1) / 2) / 6 assert t3.inradius == (2 * x1**2 * Abs(x1) - 2**(S(1) / 2) * x1**2 * Abs(x1)) / (2 * x1**2) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) p5 = Polygon(Point(half, 3**(half) / 2), Point(-half, 3**(half) / 2), Point(-1, 0), Point(-half, -(3)**(half) / 2), Point(half, -(3)**(half) / 2), Point(1, 0)) p6 = Polygon(Point(2, Rational(3) / 10), Point(Rational(17) / 10, 0), Point(2, -Rational(3) / 10), Point(Rational(23) / 10, 0)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2 '''Polygon to Polygon''' assert p1.distance(p2) == half / 2 assert p1.distance(p3) == sqrt(2) / 2 assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2) assert p5.distance(p6) == Rational(7) / 10
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex( ) # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() assert p1.rotation == 0 p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1[0] == Point(5, 5 * sqrt(3)) # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == 5 * sqrt(3) / 6 assert t3.inradius == x1**2 / ((2 + sqrt(2)) * Abs(x1)) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 warnings.filterwarnings( "error", message="Polygons may intersect producing erroneous output") raises( UserWarning, lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))) warnings.filterwarnings( "ignore", message="Polygons may intersect producing erroneous output") assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises( ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)). arbitrary_point('x')) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1.vertices[0] == Point(5, 5 * sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5)) assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6 assert t3.inradius == t3.incircle.radius == x1**2 / ( (2 + sqrt(2)) * Abs(x1)) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S( '''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning # First, test the warning warnings.filterwarnings( "error", message="Polygons may intersect producing erroneous output") raises(UserWarning, lambda: p1.distance(p2)) # now test the actual output warnings.filterwarnings( "ignore", message="Polygons may intersect producing erroneous output") assert p1.distance(p2) == half / 2 assert p1.distance(p3) == sqrt(2) / 2 assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2)
def test_polygon(): x = Symbol('x', real=True) y = Symbol('y', real=True) q = Symbol('q', real=True) u = Symbol('u', real=True) v = Symbol('v', real=True) w = Symbol('w', real=True) x1 = Symbol('x1', real=True) half = S.Half a, b, c = Point(0, 0), Point(2, 0), Point(3, 3) t = Triangle(a, b, c) assert Polygon(Point(0, 0)) == Point(0, 0) assert Polygon(a, Point(1, 0), b, c) == t assert Polygon(Point(1, 0), b, c, a) == t assert Polygon(b, c, a, Point(1, 0)) == t # 2 "remove folded" tests assert Polygon(a, Point(3, 0), b, c) == t assert Polygon(a, b, Point(3, -1), b, c) == t # remove multiple collinear points assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15), Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15), Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15), Point(15, -3), Point(15, 10), Point(15, 15)) == \ Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15)) p1 = Polygon( Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) p6 = Polygon( Point(-11, 1), Point(-9, 6.6), Point(-4, -3), Point(-8.4, -8.7)) p7 = Polygon( Point(x, y), Point(q, u), Point(v, w)) p8 = Polygon( Point(x, y), Point(v, w), Point(q, u)) p9 = Polygon( Point(0, 0), Point(4, 4), Point(3, 0), Point(5, 2)) p10 = Polygon( Point(0, 2), Point(2, 2), Point(0, 0), Point(2, 0)) p11 = Polygon(Point(0, 0), 1, n=3) p12 = Polygon(Point(0, 0), 1, 0, n=3) r = Ray(Point(-9, 6.6), Point(-9, 5.5)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0) ).is_convex() is False # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance( Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1))) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert hash(p1) == hash(p2) assert hash(p7) == hash(p8) assert hash(p3) != hash(p9) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises(ValueError, lambda: Polygon( Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')) assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))] assert p10.area == 0 assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0) assert p11 == p12 assert p11.vertices[0] == Point(1, 0) assert p11.args[0] == Point(0, 0) p11.spin(pi/2) assert p11.vertices[0] == Point(0, 1) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == pi*Rational(3, 5) assert p1.exterior_angle == pi*Rational(2, 5) assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3)) assert p1 == p1_old assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5)) assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8)) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False assert t1.is_similar(t2) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment( p1, Point(Rational(5, 2), Rational(5, 2))) assert t2.bisectors()[p2] == Segment( Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4)) p4 = Point(0, x1) assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0)) ic = (250 - 125*sqrt(2))/50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Exradius assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2 # Excenters assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Nine-point circle assert t1.nine_point_circle == Circle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) assert t1.nine_point_circle == Circle(Point(0, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2].equals(s1[0]) assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S('''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 # p3.distance(p4) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
def test_polygon(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) half = Rational(1, 2) a, b, c = Point(0, 0), Point(2, 0), Point(3, 3) t = Triangle(a, b, c) assert Polygon(a, Point(1, 0), b, c) == t assert Polygon(Point(1, 0), b, c, a) == t assert Polygon(b, c, a, Point(1, 0)) == t # 2 "remove folded" tests assert Polygon(a, Point(3, 0), b, c) == t assert Polygon(a, b, Point(3, -1), b, c) == t raises(GeometryError, lambda: Polygon((0, 0), (1, 0), (0, 1), (1, 1))) # remove multiple collinear points assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15), Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15), Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15), Point(15, -3), Point(15, 10), Point(15, 15)) == \ Polygon(Point(-15,-15), Point(15,-15), Point(15,15), Point(-15,15)) p1 = Polygon( Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) p6 = Polygon( Point(-11, 1), Point(-9, 6.6), Point(-4, -3), Point(-8.4, -8.7)) r = Ray(Point(-9,6.6), Point(-9,5.5)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False assert p1.encloses(Circle(Point(2.5,2.5),5)) is False assert p1.encloses(Ellipse(Point(2.5,2),5,6)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance( Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 warnings.filterwarnings( "error", message="Polygons may intersect producing erroneous output") raises(UserWarning, lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))) warnings.filterwarnings( "ignore", message="Polygons may intersect producing erroneous output") assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises(ValueError, lambda: Polygon( Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')) assert p6.intersection(r) == [Point(-9, 33/5), Point(-9, -84/13)] # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == 3*pi/5 assert p1.exterior_angle == 2*pi/5 assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3) assert p1 == p1_old assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5)) assert p1.length == 20*sqrt(-sqrt(5)/8 + 5/8) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125*sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Nine-point circle assert t1.nine_point_circle == Circle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) assert t1.nine_point_circle == Circle(Point(0, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S('''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning # First, test the warning warnings.filterwarnings("error", message="Polygons may intersect producing erroneous output") raises(UserWarning, lambda: p1.distance(p2)) # now test the actual output warnings.filterwarnings("ignore", message="Polygons may intersect producing erroneous output") assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex( ) # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() assert p1.rotation == 0 p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1[0] == Point(5, 5 * sqrt(3)) # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides s2 = t2.sides s3 = t3.sides # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == 5 * sqrt(3) / 6 assert t3.inradius == x1**2 / ((2 + sqrt(2)) * Abs(x1)) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) p5 = Polygon(Point(half, 3**(half) / 2), Point(-half, 3**(half) / 2), Point(-1, 0), Point(-half, -(3)**(half) / 2), Point(half, -(3)**(half) / 2), Point(1, 0)) p6 = Polygon(Point(2, Rational(3) / 10), Point(Rational(17) / 10, 0), Point(2, -Rational(3) / 10), Point(Rational(23) / 10, 0)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2 '''Polygon to Polygon''' import warnings # p1.distance(p2) emits a warning # First, test the warning warnings.filterwarnings( "error", "Polygons may intersect producing erroneous output") raises(UserWarning, "p1.distance(p2)") # now test the actual output warnings.filterwarnings( "ignore", "Polygons may intersect producing erroneous output") assert p1.distance(p2) == half / 2 # Keep testing reasonably thread safe, so reset the warning warnings.filterwarnings( "default", "Polygons may intersect producing erroneous output") # Note, in Python 2.6+, this can be done more nicely using the # warnings.catch_warnings context manager. # See http://docs.python.org/library/warnings#testing-warnings. assert p1.distance(p3) == sqrt(2) / 2 assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2) assert p5.distance(p6) == Rational(7) / 10
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon( Point(0, 0), Point(3,-1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3,-1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5+2*sqrt(10)+sqrt(29)+sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex() # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3*pi/5 assert p1.exterior_angle == 2*pi/5 assert p2.apothem == 5*cos(pi/5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() assert p1.rotation == 0 p1.spin(pi/3) assert p1.rotation == pi/3 assert p1[0] == Point(5, 5*sqrt(3)) # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3) assert p1 == p1_old # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5,2), sqrt(Rational(75,4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25,2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) ic = (250 - 125*sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5*sqrt(2)/2 assert t2.inradius == 5*sqrt(3)/6 assert t3.inradius == x1**2/((2 + sqrt(2))*Abs(x1)) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5,3), Rational(5,3)) assert m[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2