def test_residue_reduce(): a = Poly(2*t**2 - t - x**2, t) d = Poly(t**3 - x**2*t, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]}) assert residue_reduce(a, d, DE, z, invert=False) == \ ([(Poly(z**2 - S(1)/4, z), Poly((1 + 3*x*z - 6*z**2 - 2*x**2 + 4*x**2*z**2)*t - x*z + x**2 + 2*x**2*z**2 - 2*z*x**3, t))], False) assert residue_reduce(a, d, DE, z, invert=True) == \ ([(Poly(z**2 - S(1)/4, z), Poly(t + 2*x*z, t))], False) assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \ ([(Poly(z**2 - 1, z), Poly(-2*z*t/x - 2/x, t))], True) ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True) assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True) assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]}) # TODO: Skip or make faster assert residue_reduce(Poly((-2*nu**2 - x**4)/(2*x**2)*t - (1 + x**2)/x, t), Poly(t**2 + 1 + x**2/2, t), DE, z) == \ ([(Poly(z + S(1)/2, z, domain='QQ'), Poly(t**2 + 1 + x**2/2, t, domain='EX'))], True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert residue_reduce(Poly(-2*x*t + 1 - x**2, t), Poly(t**2 + 2*x*t + 1 + x**2, t), DE, z) == \ ([(Poly(z**2 + S(1)/4, z), Poly(t + x + 2*z, t))], True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert residue_reduce(Poly(t, t), Poly(t + sqrt(2), t), DE, z) == \ ([(Poly(z - 1, z), Poly(t + sqrt(2), t))], True)
def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None): """ Checks if f can be written as the logarithmic derivative of a k(t)-radical. f in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u. Either returns (n, u) or None, which means that f cannot be written as the logarithmic derivative of a k(t)-radical. case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive, hyperexponential, and hypertangent cases, respectively. If case it 'auto', it will attempt to determine the type of the derivation automatically. """ fa, fd = fa.cancel(fd, include=True) # f must be simple n, s = splitfactor(fd, DE) if not s.is_one: pass #return None z = z or Dummy('z') H, b = residue_reduce(fa, fd, DE, z=z) if not b: # I will have to verify, but I believe that the answer should be # None in this case. This should never happen for the # functions given when solving the parametric logarithmic # derivative problem when integration elementary functions (see # Bronstein's book, page 255), so most likely this indicates a bug. return None roots = [(i, i.real_roots()) for i, _ in H] if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for i, j in roots): # If f is the logarithmic derivative of a k(t)-radical, then all the # roots of the resultant must be rational numbers. return None # [(a, i), ...], where i*log(a) is a term in the log-part of the integral # of f respolys, residues = zip(*roots) or [[], []] # Note: this might be empty, but everything below should work find in that # case (it should be the same as if it were [[1, 1]]) residueterms = [(H[j][1].subs(z, i), i) for j in xrange(len(H)) for i in residues[j]] # TODO: finish writing this and write tests p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z)) p = p.as_poly(DE.t) if p is None: # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical return None if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)): return None if case == 'auto': case = DE.case if case == 'exp': wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True) with DecrementLevel(DE): pa, pd = frac_in(p, DE.t, cancel=True) wa, wd = frac_in((wa, wd), DE.t) A = parametric_log_deriv(pa, pd, wa, wd, DE) if A is None: return None n, e, u = A u *= DE.t**e # raise NotImplementedError("The hyperexponential case is " # "not yet completely implemented for is_log_deriv_k_t_radical_in_field().") elif case == 'primitive': with DecrementLevel(DE): pa, pd = frac_in(p, DE.t) A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto') if A is None: return None n, u = A elif case == 'base': # TODO: we can use more efficient residue reduction from ratint() if not fd.is_sqf or fa.degree() >= fd.degree(): # f is the logarithmic derivative in the base case if and only if # f = fa/fd, fd is square-free, deg(fa) < deg(fd), and # gcd(fa, fd) == 1. The last condition is handled by cancel() above. return None # Note: if residueterms = [], returns (1, 1) # f had better be 0 in that case. n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S(1)) u = Mul(*[Pow(i, j*n) for i, j in residueterms]) return (n, u) elif case == 'tan': raise NotImplementedError("The hypertangent case is " "not yet implemented for is_log_deriv_k_t_radical_in_field()") elif case in ['other_linear', 'other_nonlinear']: # XXX: If these are supported by the structure theorems, change to NotImplementedError. raise ValueError("The %s case is not supported in this function." % case) else: raise ValueError("case must be one of {'primitive', 'exp', 'tan', " "'base', 'auto'}, not %s" % case) common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in residueterms]] + [n], S(1)) residueterms = [(i, j*common_denom) for i, j in residueterms] m = common_denom//n assert common_denom == n*m # Verify exact division u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms])) return (common_denom, u)
it will attempt to determine the type of the derivation automatically. See also ======== is_log_deriv_k_t_radical, is_deriv_k """ fa, fd = fa.cancel(fd, include=True) # f must be simple n, s = splitfactor(fd, DE) if not s.is_one: pass z = z or Dummy('z') H, b = residue_reduce(fa, fd, DE, z=z) if not b: # I will have to verify, but I believe that the answer should be # None in this case. This should never happen for the # functions given when solving the parametric logarithmic # derivative problem when integration elementary functions (see # Bronstein's book, page 255), so most likely this indicates a bug. return None roots = [(i, i.real_roots()) for i, _ in H] if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for i, j in roots): # If f is the logarithmic derivative of a k(t)-radical, then all the # roots of the resultant must be rational numbers. return None