def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == Rational(35, 12) assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a * X + b) == a * E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4 * X, 3) == 64 * cmoment(X, 3) assert covariance(X, Y) is S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2 * X > 6) == S.Half assert P(X > Y) == Rational(5, 12) assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2 * X) assert moment(X, 0) == 1 assert moment(5 * X, 2) == 25 * moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\ (S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\ (S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1)) assert P(X > 3, X > 3) is S.One assert P(X > Y, Eq(Y, 6)) is S.Zero assert P(Eq(X + Y, 12)) == Rational(1, 36) assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6) assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2 * X + Y**Z) assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational( 1, 216) and S(3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp( 5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp( 2 * I * t) / 6 + exp(I * t) / 6 assert moment_generating_function(X)( t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp( 3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6 assert median(X) == FiniteSet(3, 4) D = Die('D', 7) assert median(D) == FiniteSet(4) # Bayes test for die BayesTest(X > 3, X + Y < 5) BayesTest(Eq(X - Y, Z), Z > Y) BayesTest(X > 3, X > 2) # arg test for die raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides. raises(ValueError, lambda: Die('X', 0)) raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides. # symbolic test for die n, k = symbols('n, k', positive=True) D = Die('D', n) dens = density(D).dict assert dens == Density(DieDistribution(n)) assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4} assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)} k = Dummy('k', integer=True) assert E(D).dummy_eq(Sum(Piecewise((k / n, k <= n), (0, True)), (k, 1, n))) assert variance(D).subs(n, 6).doit() == Rational(35, 12) ki = Dummy('ki') cumuf = cdf(D)(k) assert cumuf.dummy_eq( Sum(Piecewise((1 / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k))) assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3) t = Dummy('t') cf = characteristic_function(D)(t) assert cf.dummy_eq( Sum(Piecewise((exp(ki * I * t) / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert cf.subs( n, 3).doit() == exp(3 * I * t) / 3 + exp(2 * I * t) / 3 + exp(I * t) / 3 mgf = moment_generating_function(D)(t) assert mgf.dummy_eq( Sum(Piecewise((exp(ki * t) / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert mgf.subs(n, 3).doit() == exp(3 * t) / 3 + exp(2 * t) / 3 + exp(t) / 3
def test_fcode_Logical(): # unary Not assert fcode(Not(x)) == ".not. x" # binary And assert fcode(And(x, y)) == "x .and. y" assert fcode(And(x, Not(y))) == "x .and. .not. y" assert fcode(And(Not(x), y)) == "y .and. .not. x" assert fcode(And(Not(x), Not(y))) == ".not. x .and. .not. y" assert fcode(Not(And(x, y), evaluate=False)) == ".not. (x .and. y)" # binary Or assert fcode(Or(x, y)) == "x .or. y" assert fcode(Or(x, Not(y))) == "x .or. .not. y" assert fcode(Or(Not(x), y)) == "y .or. .not. x" assert fcode(Or(Not(x), Not(y))) == ".not. x .or. .not. y" assert fcode(Not(Or(x, y), evaluate=False)) == ".not. (x .or. y)" # mixed And/Or assert fcode(And(Or(y, z), x)) == "x .and. (y .or. z)" assert fcode(And(Or(z, x), y)) == "y .and. (x .or. z)" assert fcode(And(Or(x, y), z)) == "z .and. (x .or. y)" assert fcode(Or(And(y, z), x)) == "x .or. y .and. z" assert fcode(Or(And(z, x), y)) == "y .or. x .and. z" assert fcode(Or(And(x, y), z)) == "z .or. x .and. y" # trinary And assert fcode(And(x, y, z)) == "x .and. y .and. z" assert fcode(And(x, y, Not(z))) == "x .and. y .and. .not. z" assert fcode(And(x, Not(y), z)) == "x .and. z .and. .not. y" assert fcode(And(Not(x), y, z)) == "y .and. z .and. .not. x" assert fcode(Not(And(x, y, z), evaluate=False)) == ".not. (x .and. y .and. z)" # trinary Or assert fcode(Or(x, y, z)) == "x .or. y .or. z" assert fcode(Or(x, y, Not(z))) == "x .or. y .or. .not. z" assert fcode(Or(x, Not(y), z)) == "x .or. z .or. .not. y" assert fcode(Or(Not(x), y, z)) == "y .or. z .or. .not. x" assert fcode(Not(Or(x, y, z), evaluate=False)) == ".not. (x .or. y .or. z)"
def test_fcode_precedence(): assert fcode(And(x < y, y < x + 1)) == "x < y .and. y < x + 1" assert fcode(Or(x < y, y < x + 1)) == "x < y .or. y < x + 1" assert fcode(Xor(x < y, y < x + 1, evaluate=False)) == "x < y .neqv. y < x + 1" assert fcode(Equivalent(x < y, y < x + 1)) == "x < y .eqv. y < x + 1"
def test_fcode_Logical(): x, y, z = symbols("x y z") # unary Not assert fcode(Not(x), source_format="free") == ".not. x" # binary And assert fcode(And(x, y), source_format="free") == "x .and. y" assert fcode(And(x, Not(y)), source_format="free") == "x .and. .not. y" assert fcode(And(Not(x), y), source_format="free") == "y .and. .not. x" assert fcode(And(Not(x), Not(y)), source_format="free") == \ ".not. x .and. .not. y" assert fcode(Not(And(x, y), evaluate=False), source_format="free") == \ ".not. (x .and. y)" # binary Or assert fcode(Or(x, y), source_format="free") == "x .or. y" assert fcode(Or(x, Not(y)), source_format="free") == "x .or. .not. y" assert fcode(Or(Not(x), y), source_format="free") == "y .or. .not. x" assert fcode(Or(Not(x), Not(y)), source_format="free") == \ ".not. x .or. .not. y" assert fcode(Not(Or(x, y), evaluate=False), source_format="free") == \ ".not. (x .or. y)" # mixed And/Or assert fcode(And(Or(y, z), x), source_format="free") == "x .and. (y .or. z)" assert fcode(And(Or(z, x), y), source_format="free") == "y .and. (x .or. z)" assert fcode(And(Or(x, y), z), source_format="free") == "z .and. (x .or. y)" assert fcode(Or(And(y, z), x), source_format="free") == "x .or. y .and. z" assert fcode(Or(And(z, x), y), source_format="free") == "y .or. x .and. z" assert fcode(Or(And(x, y), z), source_format="free") == "z .or. x .and. y" # trinary And assert fcode(And(x, y, z), source_format="free") == "x .and. y .and. z" assert fcode(And(x, y, Not(z)), source_format="free") == \ "x .and. y .and. .not. z" assert fcode(And(x, Not(y), z), source_format="free") == \ "x .and. z .and. .not. y" assert fcode(And(Not(x), y, z), source_format="free") == \ "y .and. z .and. .not. x" assert fcode(Not(And(x, y, z), evaluate=False), source_format="free") == \ ".not. (x .and. y .and. z)" # trinary Or assert fcode(Or(x, y, z), source_format="free") == "x .or. y .or. z" assert fcode(Or(x, y, Not(z)), source_format="free") == \ "x .or. y .or. .not. z" assert fcode(Or(x, Not(y), z), source_format="free") == \ "x .or. z .or. .not. y" assert fcode(Or(Not(x), y, z), source_format="free") == \ "y .or. z .or. .not. x" assert fcode(Not(Or(x, y, z), evaluate=False), source_format="free") == \ ".not. (x .or. y .or. z)"
def _handle_irel(self, x, handler): """Return either None (if the conditions of self depend only on x) else a Piecewise expression whose expressions (handled by the handler that was passed) are paired with the governing x-independent relationals, e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) -> Piecewise( (handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)), (handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True)) """ # identify governing relationals rel = self.atoms(Relational) irel = list( ordered([ r for r in rel if x not in r.free_symbols and r not in (S.true, S.false) ])) if irel: args = {} exprinorder = [] for truth in product((1, 0), repeat=len(irel)): reps = dict(zip(irel, truth)) # only store the true conditions since the false are implied # when they appear lower in the Piecewise args if 1 not in truth: cond = None # flag this one so it doesn't get combined else: andargs = Tuple(*[i for i in reps if reps[i]]) free = list(andargs.free_symbols) if len(free) == 1: from sympy.solvers.inequalities import ( reduce_inequalities, _solve_inequality) try: t = reduce_inequalities(andargs, free[0]) # ValueError when there are potentially # nonvanishing imaginary parts except (ValueError, NotImplementedError): # at least isolate free symbol on left t = And(*[ _solve_inequality(a, free[0], linear=True) for a in andargs ]) else: t = And(*andargs) if t is S.false: continue # an impossible combination cond = t expr = handler(self.xreplace(reps)) if isinstance(expr, self.func) and len(expr.args) == 1: expr, econd = expr.args[0] cond = And(econd, True if cond is None else cond) # the ec pairs are being collected since all possibilities # are being enumerated, but don't put the last one in since # its expr might match a previous expression and it # must appear last in the args if cond is not None: args.setdefault(expr, []).append(cond) # but since we only store the true conditions we must maintain # the order so that the expression with the most true values # comes first exprinorder.append(expr) # convert collected conditions as args of Or for k in args: args[k] = Or(*args[k]) # take them in the order obtained args = [(e, args[e]) for e in uniq(exprinorder)] # add in the last arg args.append((expr, True)) # if any condition reduced to True, it needs to go last # and there should only be one of them or else the exprs # should agree trues = [i for i in range(len(args)) if args[i][1] is S.true] if not trues: # make the last one True since all cases were enumerated e, c = args[-1] args[-1] = (e, S.true) else: assert len(set([e for e, c in [args[i] for i in trues]])) == 1 args.append(args.pop(trues.pop())) while trues: args.pop(trues.pop()) return Piecewise(*args)
def test_true_false(): assert true is S.true assert false is S.false assert true is not True assert false is not False assert true assert not false assert true == True assert false == False assert not (true == False) assert not (false == True) assert not (true == false) assert hash(true) == hash(True) assert hash(false) == hash(False) assert len({true, True}) == len({false, False}) == 1 assert isinstance(true, BooleanAtom) assert isinstance(false, BooleanAtom) # We don't want to subclass from bool, because bool subclasses from # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and # 1 then we want them to on true and false. See the docstrings of the # various And, Or, etc. functions for examples. assert not isinstance(true, bool) assert not isinstance(false, bool) # Note: using 'is' comparison is important here. We want these to return # true and false, not True and False assert Not(true) is false assert Not(True) is false assert Not(false) is true assert Not(False) is true assert ~true is false assert ~false is true for T, F in cartes([True, true], [False, false]): assert And(T, F) is false assert And(F, T) is false assert And(F, F) is false assert And(T, T) is true assert And(T, x) == x assert And(F, x) is false if not (T is True and F is False): assert T & F is false assert F & T is false if not F is False: assert F & F is false if not T is True: assert T & T is true assert Or(T, F) is true assert Or(F, T) is true assert Or(F, F) is false assert Or(T, T) is true assert Or(T, x) is true assert Or(F, x) == x if not (T is True and F is False): assert T | F is true assert F | T is true if not F is False: assert F | F is false if not T is True: assert T | T is true assert Xor(T, F) is true assert Xor(F, T) is true assert Xor(F, F) is false assert Xor(T, T) is false assert Xor(T, x) == ~x assert Xor(F, x) == x if not (T is True and F is False): assert T ^ F is true assert F ^ T is true if not F is False: assert F ^ F is false if not T is True: assert T ^ T is false assert Nand(T, F) is true assert Nand(F, T) is true assert Nand(F, F) is true assert Nand(T, T) is false assert Nand(T, x) == ~x assert Nand(F, x) is true assert Nor(T, F) is false assert Nor(F, T) is false assert Nor(F, F) is true assert Nor(T, T) is false assert Nor(T, x) is false assert Nor(F, x) == ~x assert Implies(T, F) is false assert Implies(F, T) is true assert Implies(F, F) is true assert Implies(T, T) is true assert Implies(T, x) == x assert Implies(F, x) is true assert Implies(x, T) is true assert Implies(x, F) == ~x if not (T is True and F is False): assert T >> F is false assert F << T is false assert F >> T is true assert T << F is true if not F is False: assert F >> F is true assert F << F is true if not T is True: assert T >> T is true assert T << T is true assert Equivalent(T, F) is false assert Equivalent(F, T) is false assert Equivalent(F, F) is true assert Equivalent(T, T) is true assert Equivalent(T, x) == x assert Equivalent(F, x) == ~x assert Equivalent(x, T) == x assert Equivalent(x, F) == ~x assert ITE(T, T, T) is true assert ITE(T, T, F) is true assert ITE(T, F, T) is false assert ITE(T, F, F) is false assert ITE(F, T, T) is true assert ITE(F, T, F) is false assert ITE(F, F, T) is true assert ITE(F, F, F) is false assert all(i.simplify(1, 2) is i for i in (S.true, S.false))
def test_multivariate_bool_as_set(): x, y = symbols('x,y') assert And(x >= 0, y >= 0).as_set() == Interval(0, oo) * Interval(0, oo) assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \ Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True)
def as_relational(self, symbol): """Rewrite a FiniteSet in terms of equalities and logic operators. """ from sympy.core.relational import Eq return Or(*[Eq(symbol, elem) for elem in self])
def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(2, A) is true assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge)
def _contains(self, other): or_args = [the_set.contains(other) for the_set in self.args] return Or(*or_args)
def as_relational(self, symbol): """Rewrite a Union in terms of equalities and logic operators. """ return Or(*[set.as_relational(symbol) for set in self.args])
def pmf(self): k = Dummy('k') return Lambda( k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True)))
from sympy import * x, y = symbols('x,y') print("1.AND 2.OR") ch = int(input()) while (ch < 3): if (ch == 1): from sympy.logic.boolalg import Not, And, Or from sympy.abc import x, A, B expr = input(("Enter a logic expression to perform AND operation")) print(And(expr)) elif (ch == 2): from sympy.logic.boolalg import Not, And, Or from sympy.abc import x, A, B expr = input(("Enter a logic expression to perform OR operation")) print(Or(expr)) else: print("1")
def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ A wrapper around the heurisch integration algorithm. Explanation =========== This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise. Examples ======== >>> from sympy.core import symbols >>> from sympy.functions import cos >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper >>> n, x = symbols('n x') >>> heurisch(cos(n*x), x) sin(n*x)/n >>> heurisch_wrapper(cos(n*x), x) Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True)) See Also ======== heurisch """ from sympy.solvers.solvers import solve, denoms f = sympify(f) if x not in f.free_symbols: return f*x res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) if not isinstance(res, Basic): return res # We consider each denominator in the expression, and try to find # cases where one or more symbolic denominator might be zero. The # conditions for these cases are stored in the list slns. slns = [] for d in denoms(res): try: slns += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass if not slns: return res slns = list(uniq(slns)) # Remove the solutions corresponding to poles in the original expression. slns0 = [] for d in denoms(f): try: slns0 += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass slns = [s for s in slns if s not in slns0] if not slns: return res if len(slns) > 1: eqs = [] for sub_dict in slns: eqs.extend([Eq(key, value) for key, value in sub_dict.items()]) slns = solve(eqs, dict=True, exclude=(x,)) + slns # For each case listed in the list slns, we reevaluate the integral. pairs = [] for sub_dict in slns: expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) cond = And(*[Eq(key, value) for key, value in sub_dict.items()]) generic = Or(*[Ne(key, value) for key, value in sub_dict.items()]) if expr is None: expr = integrate(f.subs(sub_dict),x) pairs.append((expr, cond)) # If there is one condition, put the generic case first. Otherwise, # doing so may lead to longer Piecewise formulas if len(pairs) == 1: pairs = [(heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), generic), (pairs[0][0], True)] else: pairs.append((heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), True)) return Piecewise(*pairs)
def test_eliminate_implications(): assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications(A >> (C >> Not(B))) == Or( Or(Not(B), Not(C)), Not(A)) assert eliminate_implications(Equivalent(A, B, C, D)) == \ (~A | B) & (~B | C) & (~C | D) & (~D | A)
def test_simplification(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] from sympy.abc import w, x, y, z assert SOPform('xyz', set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform('xyz', set2)) == And(Or(Not(x), Not(z)), Or(x, z)) assert POSform('xyz', set1 + set2) is True assert SOPform('xyz', set1 + set2) is True assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is True minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert ( SOPform('wxyz', minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform('wxyz', minterms, dontcares) == And(Or(Not(w), y), z) # test simplification ans = And(A, Or(B, C)) assert simplify_logic('A & (B | C)') == ans assert simplify_logic('(A & B) | (A & C)') == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) assert simplify_logic(And(A, x**2-x)) == And(A, x*(x-1)) assert simplify_logic(And(A, x**2-x), simplify=False) == And(A, x**2-x) # check input ans = SOPform('xy', [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform(['x', 'y'], [[1, 0]]) == ans raises(ValueError, lambda: SOPform('x', [[1]], [[1]])) assert SOPform('x', [[1]], [[0]]) is True assert SOPform('x', [[0]], [[1]]) is True assert SOPform('x', [], []) is False raises(ValueError, lambda: POSform('x', [[1]], [[1]])) assert POSform('x', [[1]], [[0]]) is True assert POSform('x', [[0]], [[1]]) is True assert POSform('x', [], []) is False #check working of simplify assert simplify('(A & B) | (A & C)') == sympify('And(A, Or(B, C))') assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True
def test_distribute(): assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C))
def test_eliminate_implications(): assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications( A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A))
def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(1, A) is true raises(TypeError, lambda: Or(2, A)) raises(TypeError, lambda: Or(A < 2, A)) assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge)
def test_Or(): assert Or() is False assert Or(A) == A assert Or(True) is True assert Or(False) is False assert Or(True, True ) is True assert Or(True, False) is True assert Or(False, False) is False assert Or(True, A) is True assert Or(False, A) == A assert Or(True, False, False) is True assert Or(True, False, A) is True assert Or(False, False, A) == A assert Or(2, A) is True
def test_issue_8975(): assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \ Interval(-oo, -2) + Interval(2, oo)
def apply(self): return Or(*[self.pred.rcall(arg) for arg in self.expr.args])
def _sort_expr_cond(self, sym, a, b, targetcond=None): """Determine what intervals the expr, cond pairs affect. 1) If cond is True, then log it as default 1.1) Currently if cond can't be evaluated, throw NotImplementedError. 2) For each inequality, if previous cond defines part of the interval update the new conds interval. - eg x < 1, x < 3 -> [oo,1],[1,3] instead of [oo,1],[oo,3] 3) Sort the intervals to make it easier to find correct exprs Under normal use, we return the expr,cond pairs in increasing order along the real axis corresponding to the symbol sym. If targetcond is given, we return a list of (lowerbound, upperbound) pairs for this condition.""" from sympy.solvers.inequalities import _solve_inequality default = None int_expr = [] expr_cond = [] or_cond = False or_intervals = [] independent_expr_cond = [] for expr, cond in self.args: if isinstance(cond, Or): for cond2 in sorted(cond.args, key=default_sort_key): expr_cond.append((expr, cond2)) else: expr_cond.append((expr, cond)) if cond == True: break for expr, cond in expr_cond: if cond == True: independent_expr_cond.append((expr, cond)) default = self.func(*independent_expr_cond) break orig_cond = cond if sym not in cond.free_symbols: independent_expr_cond.append((expr, cond)) continue elif isinstance(cond, Equality): continue elif isinstance(cond, And): lower = S.NegativeInfinity upper = S.Infinity for cond2 in cond.args: if sym not in [cond2.lts, cond2.gts]: cond2 = _solve_inequality(cond2, sym) if cond2.lts == sym: upper = Min(cond2.gts, upper) elif cond2.gts == sym: lower = Max(cond2.lts, lower) else: raise NotImplementedError( "Unable to handle interval evaluation of expression." ) else: if sym not in [cond.lts, cond.gts]: cond = _solve_inequality(cond, sym) lower, upper = cond.lts, cond.gts # part 1: initialize with givens if cond.lts == sym: # part 1a: expand the side ... lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 elif cond.gts == sym: # part 1a: ... that can be expanded upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 else: raise NotImplementedError( "Unable to handle interval evaluation of expression.") # part 1b: Reduce (-)infinity to what was passed in. lower, upper = Max(a, lower), Min(b, upper) for n in range(len(int_expr)): # Part 2: remove any interval overlap. For any conflicts, the # iterval already there wins, and the incoming interval updates # its bounds accordingly. if self.__eval_cond(lower < int_expr[n][1]) and \ self.__eval_cond(lower >= int_expr[n][0]): lower = int_expr[n][1] elif len(int_expr[n][1].free_symbols) and \ self.__eval_cond(lower >= int_expr[n][0]): if self.__eval_cond(lower == int_expr[n][0]): lower = int_expr[n][1] else: int_expr[n][1] = Min(lower, int_expr[n][1]) elif len(int_expr[n][0].free_symbols) and \ self.__eval_cond(upper == int_expr[n][1]): upper = Min(upper, int_expr[n][0]) elif len(int_expr[n][1].free_symbols) and \ (lower >= int_expr[n][0]) != True and \ (int_expr[n][1] == Min(lower, upper)) != True: upper = Min(upper, int_expr[n][0]) elif self.__eval_cond(upper > int_expr[n][0]) and \ self.__eval_cond(upper <= int_expr[n][1]): upper = int_expr[n][0] elif len(int_expr[n][0].free_symbols) and \ self.__eval_cond(upper < int_expr[n][1]): int_expr[n][0] = Max(upper, int_expr[n][0]) if self.__eval_cond( lower >= upper) != True: # Is it still an interval? int_expr.append([lower, upper, expr]) if orig_cond == targetcond: return [(lower, upper, None)] elif isinstance(targetcond, Or) and cond in targetcond.args: or_cond = Or(or_cond, cond) or_intervals.append((lower, upper, None)) if or_cond == targetcond: or_intervals.sort(key=lambda x: x[0]) return or_intervals int_expr.sort(key=lambda x: x[1].sort_key() if x[1].is_number else S.NegativeInfinity.sort_key()) int_expr.sort(key=lambda x: x[0].sort_key() if x[0].is_number else S.Infinity.sort_key()) for n in range(len(int_expr)): if len(int_expr[n][0].free_symbols) or len( int_expr[n][1].free_symbols): if isinstance(int_expr[n][1], Min) or int_expr[n][1] == b: newval = Min(*int_expr[n][:-1]) if n > 0 and int_expr[n][0] == int_expr[n - 1][1]: int_expr[n - 1][1] = newval int_expr[n][0] = newval else: newval = Max(*int_expr[n][:-1]) if n < len(int_expr) - 1 and int_expr[n][1] == int_expr[ n + 1][0]: int_expr[n + 1][0] = newval int_expr[n][1] = newval # Add holes to list of intervals if there is a default value, # otherwise raise a ValueError. holes = [] curr_low = a for int_a, int_b, expr in int_expr: if (curr_low < int_a) == True: holes.append([curr_low, Min(b, int_a), default]) elif (curr_low >= int_a) != True: holes.append([curr_low, Min(b, int_a), default]) curr_low = Min(b, int_b) if (curr_low < b) == True: holes.append([Min(b, curr_low), b, default]) elif (curr_low >= b) != True: holes.append([Min(b, curr_low), b, default]) if holes and default is not None: int_expr.extend(holes) if targetcond == True: return [(h[0], h[1], None) for h in holes] elif holes and default is None: raise ValueError("Called interval evaluation over piecewise " "function on undefined intervals %s" % ", ".join([str((h[0], h[1])) for h in holes])) return int_expr
def test_Or(): X = Geometric('X', S.Half) P(Or(X < 3, X > 4)) == Rational(13, 16) P(Or(X > 2, X > 1)) == P(X > 1) P(Or(X >= 3, X < 3)) == 1
def real_root(arg, n=None, evaluate=None): """Return the real *n*'th-root of *arg* if possible. Parameters ========== n : int or None, optional If *n* is ``None``, then all instances of ``(-n)**(1/odd)`` will be changed to ``-n**(1/odd)``. This will only create a real root of a principal root. The presence of other factors may cause the result to not be real. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, real_root, Rational >>> from sympy.abc import x, n >>> real_root(-8, 3) -2 >>> root(-8, 3) 2*(-1)**(1/3) >>> real_root(_) -2 If one creates a non-principal root and applies real_root, the result will not be real (so use with caution): >>> root(-8, 3, 2) -2*(-1)**(2/3) >>> real_root(_) -2*(-1)**(2/3) See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot root, sqrt """ from sympy.functions.elementary.complexes import Abs, im, sign from sympy.functions.elementary.piecewise import Piecewise if n is not None: return Piecewise( (root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))), ( Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate), And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One)), ), (root(arg, n, evaluate=evaluate), True), ) rv = sympify(arg) n1pow = Transform( lambda x: -((-x.base) ** x.exp), lambda x: x.is_Pow and x.base.is_negative and x.exp.is_Rational and x.exp.p == 1 and x.exp.q % 2, ) return rv.xreplace(n1pow)
def test_equals(): assert Not(Or(A, B)).equals(And(Not(A), Not(B))) is True assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True assert (A >> B).equals(~A >> ~B) is False assert (A >> (B >> A)).equals(A >> (C >> A)) is False
def test_fcode_Xlogical(): x, y, z = symbols("x y z") # binary Xor assert fcode(Xor(x, y, evaluate=False)) == "x .neqv. y" assert fcode(Xor(x, Not(y), evaluate=False)) == "x .neqv. .not. y" assert fcode(Xor(Not(x), y, evaluate=False)) == "y .neqv. .not. x" assert fcode(Xor(Not(x), Not(y), evaluate=False)) == ".not. x .neqv. .not. y" assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False)) == ".not. (x .neqv. y)" # binary Equivalent assert fcode(Equivalent(x, y)) == "x .eqv. y" assert fcode(Equivalent(x, Not(y))) == "x .eqv. .not. y" assert fcode(Equivalent(Not(x), y)) == "y .eqv. .not. x" assert fcode(Equivalent(Not(x), Not(y))) == ".not. x .eqv. .not. y" assert fcode(Not(Equivalent(x, y), evaluate=False)) == ".not. (x .eqv. y)" # mixed And/Equivalent assert fcode(Equivalent(And(y, z), x)) == "x .eqv. y .and. z" assert fcode(Equivalent(And(z, x), y)) == "y .eqv. x .and. z" assert fcode(Equivalent(And(x, y), z)) == "z .eqv. x .and. y" assert fcode(And(Equivalent(y, z), x)) == "x .and. (y .eqv. z)" assert fcode(And(Equivalent(z, x), y)) == "y .and. (x .eqv. z)" assert fcode(And(Equivalent(x, y), z)) == "z .and. (x .eqv. y)" # mixed Or/Equivalent assert fcode(Equivalent(Or(y, z), x)) == "x .eqv. y .or. z" assert fcode(Equivalent(Or(z, x), y)) == "y .eqv. x .or. z" assert fcode(Equivalent(Or(x, y), z)) == "z .eqv. x .or. y" assert fcode(Or(Equivalent(y, z), x)) == "x .or. (y .eqv. z)" assert fcode(Or(Equivalent(z, x), y)) == "y .or. (x .eqv. z)" assert fcode(Or(Equivalent(x, y), z)) == "z .or. (x .eqv. y)" # mixed Xor/Equivalent assert fcode(Equivalent(Xor(y, z, evaluate=False), x)) == "x .eqv. (y .neqv. z)" assert fcode(Equivalent(Xor(z, x, evaluate=False), y)) == "y .eqv. (x .neqv. z)" assert fcode(Equivalent(Xor(x, y, evaluate=False), z)) == "z .eqv. (x .neqv. y)" assert fcode(Xor(Equivalent(y, z), x, evaluate=False)) == "x .neqv. (y .eqv. z)" assert fcode(Xor(Equivalent(z, x), y, evaluate=False)) == "y .neqv. (x .eqv. z)" assert fcode(Xor(Equivalent(x, y), z, evaluate=False)) == "z .neqv. (x .eqv. y)" # mixed And/Xor assert fcode(Xor(And(y, z), x, evaluate=False)) == "x .neqv. y .and. z" assert fcode(Xor(And(z, x), y, evaluate=False)) == "y .neqv. x .and. z" assert fcode(Xor(And(x, y), z, evaluate=False)) == "z .neqv. x .and. y" assert fcode(And(Xor(y, z, evaluate=False), x)) == "x .and. (y .neqv. z)" assert fcode(And(Xor(z, x, evaluate=False), y)) == "y .and. (x .neqv. z)" assert fcode(And(Xor(x, y, evaluate=False), z)) == "z .and. (x .neqv. y)" # mixed Or/Xor assert fcode(Xor(Or(y, z), x, evaluate=False)) == "x .neqv. y .or. z" assert fcode(Xor(Or(z, x), y, evaluate=False)) == "y .neqv. x .or. z" assert fcode(Xor(Or(x, y), z, evaluate=False)) == "z .neqv. x .or. y" assert fcode(Or(Xor(y, z, evaluate=False), x)) == "x .or. (y .neqv. z)" assert fcode(Or(Xor(z, x, evaluate=False), y)) == "y .or. (x .neqv. z)" assert fcode(Or(Xor(x, y, evaluate=False), z)) == "z .or. (x .neqv. y)" # ternary Xor assert fcode(Xor(x, y, z, evaluate=False)) == "x .neqv. y .neqv. z" assert fcode(Xor(x, y, Not(z), evaluate=False)) == "x .neqv. y .neqv. .not. z" assert fcode(Xor(x, Not(y), z, evaluate=False)) == "x .neqv. z .neqv. .not. y" assert fcode(Xor(Not(x), y, z, evaluate=False)) == "y .neqv. z .neqv. .not. x"
def test_simplification(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform([x, y, z], set2)) == Not(Or(And(Not(x), Not(z)), And(x, z))) assert POSform([x, y, z], set1 + set2) is true assert SOPform([x, y, z], set1 + set2) is true assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert (SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) # test simplification ans = And(A, Or(B, C)) assert simplify_logic(A & (B | C)) == ans assert simplify_logic((A & B) | (A & C)) == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) is S.false assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) b = (~x & ~y & ~z) | (~x & ~y & z) e = And(A, b) assert simplify_logic(e) == A & ~x & ~y # check input ans = SOPform([x, y], [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform([x, y], [[1, 0]]) == ans raises(ValueError, lambda: SOPform([x], [[1]], [[1]])) assert SOPform([x], [[1]], [[0]]) is true assert SOPform([x], [[0]], [[1]]) is true assert SOPform([x], [], []) is false raises(ValueError, lambda: POSform([x], [[1]], [[1]])) assert POSform([x], [[1]], [[0]]) is true assert POSform([x], [[0]], [[1]]) is true assert POSform([x], [], []) is false # check working of simplify assert simplify((A & B) | (A & C)) == And(A, Or(B, C)) assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True
def eval(cls, *_args): """Either return a modified version of the args or, if no modifications were made, return None. Modifications that are made here: 1) relationals are made canonical 2) any False conditions are dropped 3) any repeat of a previous condition is ignored 3) any args past one with a true condition are dropped If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned. """ from sympy.functions.elementary.complexes import im, re if not _args: return Undefined if len(_args) == 1 and _args[0][-1] == True: return _args[0][0] newargs = [] # the unevaluated conditions current_cond = set() # the conditions up to a given e, c pair # make conditions canonical args = [] for e, c in _args: if (not c.is_Atom and not isinstance(c, Relational) and not c.has(im, re)): free = c.free_symbols if len(free) == 1: funcs = [ i for i in c.atoms(Function) if not isinstance(i, Boolean) ] if len(funcs) == 1 and len( c.xreplace({ list(funcs)[0]: Dummy() }).free_symbols) == 1: # we can treat function like a symbol free = funcs _c = c x = free.pop() try: c = c.as_set().as_relational(x) except NotImplementedError: pass else: reps = {} for i in c.atoms(Relational): ic = i.canonical if ic.rhs in (S.Infinity, S.NegativeInfinity): if not _c.has(ic.rhs): # don't accept introduction of # new Relationals with +/-oo reps[i] = S.true elif ('=' not in ic.rel_op and c.xreplace( {x: i.rhs}) != _c.xreplace({x: i.rhs})): reps[i] = Relational( i.lhs, i.rhs, i.rel_op + '=') c = c.xreplace(reps) args.append((e, _canonical(c))) for expr, cond in args: # Check here if expr is a Piecewise and collapse if one of # the conds in expr matches cond. This allows the collapsing # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)). # This is important when using piecewise_fold to simplify # multiple Piecewise instances having the same conds. # Eventually, this code should be able to collapse Piecewise's # having different intervals, but this will probably require # using the new assumptions. if isinstance(expr, Piecewise): unmatching = [] for i, (e, c) in enumerate(expr.args): if c in current_cond: # this would already have triggered continue if c == cond: if c != True: # nothing past this condition will ever # trigger and only those args before this # that didn't match a previous condition # could possibly trigger if unmatching: expr = Piecewise(*(unmatching + [(e, c)])) else: expr = e break else: unmatching.append((e, c)) # check for condition repeats got = False # -- if an And contains a condition that was # already encountered, then the And will be # False: if the previous condition was False # then the And will be False and if the previous # condition is True then then we wouldn't get to # this point. In either case, we can skip this condition. for i in ([cond] + (list(cond.args) if isinstance(cond, And) else [])): if i in current_cond: got = True break if got: continue # -- if not(c) is already in current_cond then c is # a redundant condition in an And. This does not # apply to Or, however: (e1, c), (e2, Or(~c, d)) # is not (e1, c), (e2, d) because if c and d are # both False this would give no results when the # true answer should be (e2, True) if isinstance(cond, And): nonredundant = [] for c in cond.args: if (isinstance(c, Relational) and c.negated.canonical in current_cond): continue nonredundant.append(c) cond = cond.func(*nonredundant) elif isinstance(cond, Relational): if cond.negated.canonical in current_cond: cond = S.true current_cond.add(cond) # collect successive e,c pairs when exprs or cond match if newargs: if newargs[-1].expr == expr: orcond = Or(cond, newargs[-1].cond) if isinstance(orcond, (And, Or)): orcond = distribute_and_over_or(orcond) newargs[-1] = ExprCondPair(expr, orcond) continue elif newargs[-1].cond == cond: newargs[-1] = ExprCondPair(expr, cond) continue newargs.append(ExprCondPair(expr, cond)) # some conditions may have been redundant missing = len(newargs) != len(_args) # some conditions may have changed same = all(a == b for a, b in zip(newargs, _args)) # if either change happened we return the expr with the # updated args if not newargs: raise ValueError( filldedent(''' There are no conditions (or none that are not trivially false) to define an expression.''')) if missing or not same: return cls(*newargs)
def test_Or(): X = Geometric('X', S(1) / 2) P(Or(X < 3, X > 4)) == S(13) / 16 P(Or(X > 2, X > 1)) == P(X > 1) P(Or(X >= 3, X < 3)) == 1