Пример #1
0
def test_function_return_types():
    # Lets ensure that decompositions of immutable matrices remain immutable
    # I.e. do MatrixBase methods return the correct class?
    X = ImmutableMatrix([[1, 2], [3, 4]])
    Y = ImmutableMatrix([[1], [0]])
    q, r = X.QRdecomposition()
    assert (type(q), type(r)) == (ImmutableMatrix, ImmutableMatrix)

    assert type(X.LUsolve(Y)) == ImmutableMatrix
    assert type(X.QRsolve(Y)) == ImmutableMatrix

    X = ImmutableMatrix([[5, 2], [2, 7]])
    assert X.T == X
    assert X.is_symmetric
    assert type(X.cholesky()) == ImmutableMatrix
    L, D = X.LDLdecomposition()
    assert (type(L), type(D)) == (ImmutableMatrix, ImmutableMatrix)

    X = ImmutableMatrix([[1, 2], [2, 1]])
    assert X.is_diagonalizable()
    assert X.det() == -3
    assert X.norm(2) == 3

    assert type(X.eigenvects()[0][2][0]) == ImmutableMatrix

    assert type(zeros(3, 3).as_immutable().nullspace()[0]) == ImmutableMatrix

    X = ImmutableMatrix([[1, 0], [2, 1]])
    assert type(X.lower_triangular_solve(Y)) == ImmutableMatrix
    assert type(X.T.upper_triangular_solve(Y)) == ImmutableMatrix

    assert type(X.minor_submatrix(0, 0)) == ImmutableMatrix
Пример #2
0
def test_immutable_evaluation():
    X = ImmutableMatrix(eye(3))
    A = ImmutableMatrix(3, 3, range(9))
    assert isinstance(X + A, ImmutableMatrix)
    assert isinstance(X * A, ImmutableMatrix)
    assert isinstance(X * 2, ImmutableMatrix)
    assert isinstance(2 * X, ImmutableMatrix)
    assert isinstance(A**2, ImmutableMatrix)
Пример #3
0
def test_subs():
    A = ImmutableMatrix([[1, 2], [3, 4]])
    B = ImmutableMatrix([[1, 2], [x, 4]])
    C = ImmutableMatrix([[-x, x * y], [-(x + y), y**2]])
    assert B.subs(x, 3) == A
    assert (x * B).subs(x, 3) == 3 * A
    assert (x * eye(2) + B).subs(x, 3) == 3 * eye(2) + A
    assert C.subs([[x, -1], [y, -2]]) == A
    assert C.subs([(x, -1), (y, -2)]) == A
    assert C.subs({x: -1, y: -2}) == A
    assert C.subs({x: y - 1, y: x - 1}, simultaneous=True) == \
        ImmutableMatrix([[1 - y, (x - 1)*(y - 1)], [2 - x - y, (x - 1)**2]])
Пример #4
0
 def __new__(cls, *mats):
     from sympy.matrices.immutable import ImmutableMatrix
     data = [[
         mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
         for j in range(len(mats))
     ] for i in range(len(mats))]
     return Basic.__new__(BlockDiagMatrix, ImmutableMatrix(data))
Пример #5
0
 def blocks(self):
     from sympy.matrices.immutable import ImmutableMatrix
     mats = self.args
     data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
                     for j in range(len(mats))]
                     for i in range(len(mats))]
     return ImmutableMatrix(data)
Пример #6
0
    def __new__(cls, *args):
        from sympy.matrices.immutable import ImmutableMatrix
        args = map(sympify, args)
        mat = ImmutableMatrix(*args)

        obj = Basic.__new__(cls, mat)
        return obj
Пример #7
0
    def as_explicit(self):
        """
        Returns a dense Matrix with elements represented explicitly

        Returns an object of type ImmutableMatrix.

        Examples
        ========

        >>> from sympy import Identity
        >>> I = Identity(3)
        >>> I
        I
        >>> I.as_explicit()
        [1, 0, 0]
        [0, 1, 0]
        [0, 0, 1]

        See Also
        ========
        as_mutable: returns mutable Matrix type

        """
        from sympy.matrices.immutable import ImmutableMatrix
        return ImmutableMatrix([[    self[i, j]
                            for j in range(self.cols)]
                            for i in range(self.rows)])
Пример #8
0
def test_as_immutable():
    data = [[1, 2], [3, 4]]
    X = Matrix(data)
    assert sympify(X) == X.as_immutable() == ImmutableMatrix(data)

    data = {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4}
    X = SparseMatrix(2, 2, data)
    assert sympify(X) == X.as_immutable() == ImmutableSparseMatrix(2, 2, data)
Пример #9
0
def wigner_d(J, alpha, beta, gamma):
    """Return the Wigner D matrix for angular momentum J.

    Explanation
    ===========

    J :
        An integer, half-integer, or SymPy symbol for the total angular
        momentum of the angular momentum space being rotated.
    alpha, beta, gamma - Real numbers representing the Euler.
        Angles of rotation about the so-called vertical, line of nodes, and
        figure axes. See [Edmonds74]_.

    Returns
    =======

    A matrix representing the corresponding Euler angle rotation( in the basis
    of eigenvectors of `J_z`).

    .. math ::
        \\mathcal{D}_{\\alpha \\beta \\gamma} =
        \\exp\\big( \\frac{i\\alpha}{\\hbar} J_z\\big)
        \\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
        \\exp\\big( \\frac{i\\gamma}{\\hbar} J_z\\big)

    The components are calculated using the general form [Edmonds74]_,
    equation 4.1.12.

    Examples
    ========

    The simplest possible example:

    >>> from sympy.physics.wigner import wigner_d
    >>> from sympy import Integer, symbols, pprint
    >>> half = 1/Integer(2)
    >>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
    >>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True)
    ⎡  ⅈ⋅α  ⅈ⋅γ             ⅈ⋅α  -ⅈ⋅γ         ⎤
    ⎢  ───  ───             ───  ─────        ⎥
    ⎢   2    2     ⎛β⎞       2     2      ⎛β⎞ ⎥
    ⎢ ℯ   ⋅ℯ   ⋅cos⎜─⎟     ℯ   ⋅ℯ     ⋅sin⎜─⎟ ⎥
    ⎢              ⎝2⎠                    ⎝2⎠ ⎥
    ⎢                                         ⎥
    ⎢  -ⅈ⋅α   ⅈ⋅γ          -ⅈ⋅α   -ⅈ⋅γ        ⎥
    ⎢  ─────  ───          ─────  ─────       ⎥
    ⎢    2     2     ⎛β⎞     2      2      ⎛β⎞⎥
    ⎢-ℯ     ⋅ℯ   ⋅sin⎜─⎟  ℯ     ⋅ℯ     ⋅cos⎜─⎟⎥
    ⎣                ⎝2⎠                   ⎝2⎠⎦

    """
    d = wigner_d_small(J, beta)
    M = [J - i for i in range(2 * J + 1)]
    D = [[
        exp(I * Mi * alpha) * d[i, j] * exp(I * Mj * gamma)
        for j, Mj in enumerate(M)
    ] for i, Mi in enumerate(M)]
    return ImmutableMatrix(D)
Пример #10
0
    def doit(self, **ignored):
        expr = self.func(*[i.doit(**ignored) for i in self.args])
        # Check for explicit matrices:
        from sympy import MatrixBase
        from sympy.matrices.immutable import ImmutableMatrix
        explicit = [i for i in expr.args if isinstance(i, MatrixBase)]
        if explicit:
            remainder = [i for i in expr.args if i not in explicit]
            expl_mat = ImmutableMatrix(
                [Mul.fromiter(i) for i in zip(*explicit)]).reshape(*self.shape)
            expr = HadamardProduct(*([expl_mat] + remainder))

        return canonicalize(expr)
Пример #11
0
def test_Equality():
    assert Equality(IM, IM) is S.true
    assert Unequality(IM, IM) is S.false
    assert Equality(IM, IM.subs(1, 2)) is S.false
    assert Unequality(IM, IM.subs(1, 2)) is S.true
    assert Equality(IM, 2) is S.false
    assert Unequality(IM, 2) is S.true
    M = ImmutableMatrix([x, y])
    assert Equality(M, IM) is S.false
    assert Unequality(M, IM) is S.true
    assert Equality(M, M.subs(x, 2)).subs(x, 2) is S.true
    assert Unequality(M, M.subs(x, 2)).subs(x, 2) is S.false
    assert Equality(M, M.subs(x, 2)).subs(x, 3) is S.false
    assert Unequality(M, M.subs(x, 2)).subs(x, 3) is S.true
Пример #12
0
def test_block_index():
    I = Identity(3)
    Z = ZeroMatrix(3, 3)
    B = BlockMatrix([[I, I], [I, I]])
    e3 = ImmutableMatrix(eye(3))
    BB = BlockMatrix([[e3, e3], [e3, e3]])
    assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
    assert B[4, 3] == B[5, 1] == 0

    BB = BlockMatrix([[e3, e3], [e3, e3]])
    assert B.as_explicit() == BB.as_explicit()

    BI = BlockMatrix([[I, Z], [Z, I]])

    assert BI.as_explicit().equals(eye(6))
Пример #13
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert isinstance(X.state_space, Range)
    assert X.index_set == S.Naturals0
    assert isinstance(X.transition_probabilities, MatrixSymbol)
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))
    raises(NotImplementedError, lambda: X.communication_classes())
    raises(NotImplementedError, lambda: X.canonical_form())
    raises(NotImplementedError, lambda: X.decompose())

    nz = Symbol('n', integer=True)
    TZ = MatrixSymbol('M', nz, nz)
    SZ = Range(nz)
    YZ = DiscreteMarkovChain('Y', SZ, TZ)
    assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    # any hashable object should be a valid state
    # states should be valid as a tuple/set/list/Tuple/Range
    sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
    state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
                    Tuple(S(1), exp(sym), Str('World'), sympify=False),
                    Range(-1, 5, 2), [rainy, cloudy, sunny]]
    chains = [
        DiscreteMarkovChain("Y", state_space) for state_space in state_spaces
    ]

    for i, Y in enumerate(chains):
        assert isinstance(Y.transition_probabilities, MatrixSymbol)
        assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(
            *state_spaces[i])
        assert Y.number_of_states == 3

        with ignore_warnings(
                UserWarning):  # TODO: Restore tests once warnings are removed
            assert P(Eq(Y[2], 1), Eq(Y[0], 2),
                     evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
        assert E(Y[0]) == Expectation(Y[0])

        raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
    Y = DiscreteMarkovChain("Y", Range(1, t, 2))
    assert Y.number_of_states == ceiling((t - 1) / 2)

    # pass name and transition_probabilities
    chains = [
        DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
        DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
        DiscreteMarkovChain("Y",
                            trans_probs=Matrix([[pi, 1 - pi], [sym, 1 - sym]]))
    ]
    for Z in chains:
        assert Z.number_of_states == Z.transition_probabilities.shape[0]
        assert isinstance(Z.transition_probabilities, ImmutableMatrix)

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
            (TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] +
             TS[1, 2] * TS[2, 2])).simplify() == 0
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(
        YS[1],
        1)) == TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] + TS[1, 2] * TS[2, 2]
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert E(Y[3], evaluate=False) == Expectation(Y[3])
        assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3.fundamental_matrix() == ImmutableMatrix(
        [[176, 81, -132], [36, 141, -52], [-44, -39, 208]]) / 125
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    assert Y2.canonical_form() == ([0, 1, 2], TO2)
    assert Y3.canonical_form() == ([0, 1, 2], TO3)
    assert Y2.decompose() == ([0, 1,
                               2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
    assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3,
                                                     []), Matrix(0, 0, []))
    TO4 = Matrix([[Rational(1, 5),
                   Rational(2, 5),
                   Rational(2, 5)], [Rational(1, 10), S.Half,
                                     Rational(2, 5)],
                  [Rational(3, 5),
                   Rational(3, 10),
                   Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    assert Y4.is_ergodic() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    assert Y5.stationary_distribution(condition_set=True).subs(
        TS1, TO4).contains(w).doit() == S.true
    TO6 = Matrix([[S.One, 0, 0, 0, 0], [S.Half, 0, S.Half, 0, 0],
                  [0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half],
                  [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One],
         [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilities() == ImmutableMatrix(
        [[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half],
         [Rational(1, 4), Rational(3, 4)]])
    TO7 = Matrix([[Rational(1, 2),
                   Rational(1, 4),
                   Rational(1, 4)], [Rational(1, 2), 0,
                                     Rational(1, 2)],
                  [Rational(1, 4),
                   Rational(1, 4),
                   Rational(1, 2)]])
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    assert Y7.is_absorbing_chain() == False
    assert Y7.fundamental_matrix() == ImmutableMatrix(
        [[Rational(86, 75),
          Rational(1, 25),
          Rational(-14, 75)],
         [Rational(2, 25), Rational(21, 25),
          Rational(2, 25)],
         [Rational(-14, 75),
          Rational(1, 25),
          Rational(86, 75)]])

    # test for zero-sized matrix functionality
    X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
    assert X.number_of_states == 0
    assert X.stationary_distribution() == Matrix([[]])
    assert X.communication_classes() == []
    assert X.canonical_form() == ([], Matrix([[]]))
    assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]]))
    assert X.is_regular() == False
    assert X.is_ergodic() == False

    # test communication_class
    # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
    # tutorial 2.pdf
    TO7 = Matrix([[0, 5, 5, 0, 0], [0, 0, 0, 10, 0], [5, 0, 5, 0, 0],
                  [0, 10, 0, 0, 0], [0, 3, 0, 3, 4]]) / 10
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    tuples = Y7.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1, 3], [0, 2], [4])
    assert recurrence == (True, False, False)
    assert periods == (2, 1, 1)

    TO8 = Matrix([[0, 0, 0, 10, 0, 0], [5, 0, 5, 0, 0, 0], [0, 4, 0, 0, 0, 6],
                  [10, 0, 0, 0, 0, 0], [0, 10, 0, 0, 0, 0], [0, 0, 0, 5, 5, 0]
                  ]) / 10
    Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
    tuples = Y8.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3], [1, 2, 5, 4])
    assert recurrence == (True, False)
    assert periods == (2, 2)

    TO9 = Matrix(
        [[2, 0, 0, 3, 0, 0, 3, 2, 0, 0], [0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 2, 2, 0, 0, 0, 0, 0, 3, 3], [0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
         [0, 0, 0, 0, 5, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
         [4, 0, 0, 5, 0, 0, 1, 0, 0, 0], [2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
         [3, 0, 1, 0, 0, 0, 0, 0, 4, 2], [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]]) / 10
    Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
    tuples = Y9.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
    assert recurrence == (True, True, False, True, False)
    assert periods == (1, 1, 1, 1, 1)

    # test canonical form
    # see https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    # example 11.13
    T = Matrix([[1, 0, 0, 0, 0], [S(1) / 2, 0, S(1) / 2, 0, 0],
                [0, S(1) / 2, 0, S(1) / 2, 0], [0, 0,
                                                S(1) / 2, 0,
                                                S(1) / 2], [0, 0, 0, 0,
                                                            S(1)]])
    DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T)
    states, A, B, C = DW.decompose()
    assert states == [0, 4, 1, 2, 3]
    assert A == Matrix([[1, 0], [0, 1]])
    assert B == Matrix([[S(1) / 2, 0], [0, 0], [0, S(1) / 2]])
    assert C == Matrix([[0, S(1) / 2, 0], [S(1) / 2, 0, S(1) / 2],
                        [0, S(1) / 2, 0]])
    states, new_matrix = DW.canonical_form()
    assert states == [0, 4, 1, 2, 3]
    assert new_matrix == Matrix([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0],
                                 [S(1) / 2, 0, 0, S(1) / 2, 0],
                                 [0, 0, S(1) / 2, 0,
                                  S(1) / 2], [0, S(1) / 2, 0,
                                              S(1) / 2, 0]])

    # test regular and ergodic
    # https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    T = Matrix([[0, 4, 0, 0, 0], [1, 0, 3, 0, 0], [0, 2, 0, 2, 0],
                [0, 0, 3, 0, 1], [0, 0, 0, 4, 0]]) / 4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    T = Matrix([[0, 1], [1, 0]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    # http://www.math.wisc.edu/~valko/courses/331/MC2.pdf
    T = Matrix([[2, 1, 1], [2, 0, 2], [1, 1, 2]]) / 4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()
    # https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf
    T = Matrix([[1, 1], [1, 1]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()

    # test is_absorbing_chain
    T = Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_absorbing_chain()
    # https://en.wikipedia.org/wiki/Absorbing_Markov_chain
    T = Matrix([[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 0, 2]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()
    T = Matrix([[2, 0, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0],
                [0, 0, 1, 0, 1], [0, 0, 0, 0, 2]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()

    # test custom state space
    Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
    tuples = Y10.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1], [2, 3])
    assert recurrence == (True, False)
    assert periods == (1, 1)
    assert Y10.canonical_form() == ([1, 2, 3], TO2)
    assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3,
                                                             0:1], TO2[1:3,
                                                                       1:3])

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4),
                 Rational(1, 4)], [Rational(1, 3), 0,
                                   Rational(2, 3)], [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
    raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))

    # testing miscellaneous queries with different state space
    X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    a = X.state_space.args[0]
    c = X.state_space.args[2]
    assert (E(X[1]**2, Eq(X[0], 1)) -
            (a**2 / 3 + 2 * c**2 / 3)).simplify() == 0
    assert (variance(X[1], Eq(X[0], 1)) -
            (2 * (-a / 3 + c / 3)**2 / 3 +
             (2 * a / 3 - 2 * c / 3)**2 / 3)).simplify() == 0
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))

    #testing queries with multiple RandomIndexedSymbols
    T = Matrix([[Rational(5, 10),
                 Rational(3, 10),
                 Rational(2, 10)],
                [Rational(2, 10),
                 Rational(7, 10),
                 Rational(1, 10)],
                [Rational(3, 10),
                 Rational(3, 10),
                 Rational(4, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5)
    assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2)
    assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6)
    assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)),
                 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14)
    assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)),
                 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14)
    assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)),
                 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14)
    assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1))
    assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1))
    assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    T = Matrix([[Rational(1, 10),
                 Rational(4, 10),
                 Rational(5, 10)],
                [Rational(3, 10),
                 Rational(4, 10),
                 Rational(3, 10)],
                [Rational(7, 10),
                 Rational(2, 10),
                 Rational(1, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    query = P(Eq(Y[a], b), Eq(Y[c], d))
    assert query.subs({
        a: 10,
        b: 2,
        c: 5,
        d: 1
    }).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4)
    assert query.subs({
        a: 15,
        b: 0,
        c: 10,
        d: 1
    }).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4)
    query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
    query_le = P(Le(Y[a], b), Eq(Y[c], d))
    assert query_gt.subs({
        a: 5,
        b: 2,
        c: 1,
        d: 0
    }).evalf() + query_le.subs({
        a: 5,
        b: 2,
        c: 1,
        d: 0
    }).evalf() == 1
    query_ge = P(Ge(Y[a], b), Eq(Y[c], d))
    query_lt = P(Lt(Y[a], b), Eq(Y[c], d))
    assert query_ge.subs({
        a: 4,
        b: 1,
        c: 0,
        d: 2
    }).evalf() + query_lt.subs({
        a: 4,
        b: 1,
        c: 0,
        d: 2
    }).evalf() == 1

    #test issue 20078
    assert (2 * Y[1] + 3 * Y[1]).simplify() == 5 * Y[1]
    assert (2 * Y[1] - 3 * Y[1]).simplify() == -Y[1]
    assert (2 * (0.25 * Y[1])).simplify() == 0.5 * Y[1]
    assert ((2 * Y[1]) * (0.25 * Y[1])).simplify() == 0.5 * Y[1]**2
    assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1) * Y[1]**2
Пример #14
0
def wigner_d_small(J, beta):
    """Return the small Wigner d matrix for angular momentum J.

    Explanation
    ===========

    J : An integer, half-integer, or SymPy symbol for the total angular
        momentum of the angular momentum space being rotated.
    beta : A real number representing the Euler angle of rotation about
        the so-called line of nodes. See [Edmonds74]_.

    Returns
    =======

    A matrix representing the corresponding Euler angle rotation( in the basis
    of eigenvectors of `J_z`).

    .. math ::
        \\mathcal{d}_{\\beta} = \\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)

    The components are calculated using the general form [Edmonds74]_,
    equation 4.1.15.

    Examples
    ========

    >>> from sympy import Integer, symbols, pi, pprint
    >>> from sympy.physics.wigner import wigner_d_small
    >>> half = 1/Integer(2)
    >>> beta = symbols("beta", real=True)
    >>> pprint(wigner_d_small(half, beta), use_unicode=True)
    ⎡   ⎛β⎞      ⎛β⎞⎤
    ⎢cos⎜─⎟   sin⎜─⎟⎥
    ⎢   ⎝2⎠      ⎝2⎠⎥
    ⎢               ⎥
    ⎢    ⎛β⎞     ⎛β⎞⎥
    ⎢-sin⎜─⎟  cos⎜─⎟⎥
    ⎣    ⎝2⎠     ⎝2⎠⎦

    >>> pprint(wigner_d_small(2*half, beta), use_unicode=True)
    ⎡        2⎛β⎞              ⎛β⎞    ⎛β⎞           2⎛β⎞     ⎤
    ⎢     cos ⎜─⎟        √2⋅sin⎜─⎟⋅cos⎜─⎟        sin ⎜─⎟     ⎥
    ⎢         ⎝2⎠              ⎝2⎠    ⎝2⎠            ⎝2⎠     ⎥
    ⎢                                                        ⎥
    ⎢       ⎛β⎞    ⎛β⎞       2⎛β⎞      2⎛β⎞        ⎛β⎞    ⎛β⎞⎥
    ⎢-√2⋅sin⎜─⎟⋅cos⎜─⎟  - sin ⎜─⎟ + cos ⎜─⎟  √2⋅sin⎜─⎟⋅cos⎜─⎟⎥
    ⎢       ⎝2⎠    ⎝2⎠        ⎝2⎠       ⎝2⎠        ⎝2⎠    ⎝2⎠⎥
    ⎢                                                        ⎥
    ⎢        2⎛β⎞               ⎛β⎞    ⎛β⎞          2⎛β⎞     ⎥
    ⎢     sin ⎜─⎟        -√2⋅sin⎜─⎟⋅cos⎜─⎟       cos ⎜─⎟     ⎥
    ⎣         ⎝2⎠               ⎝2⎠    ⎝2⎠           ⎝2⎠     ⎦

    From table 4 in [Edmonds74]_

    >>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True)
    ⎡ √2   √2⎤
    ⎢ ──   ──⎥
    ⎢ 2    2 ⎥
    ⎢        ⎥
    ⎢-√2   √2⎥
    ⎢────  ──⎥
    ⎣ 2    2 ⎦

    >>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}),
    ... use_unicode=True)
    ⎡       √2      ⎤
    ⎢1/2    ──   1/2⎥
    ⎢       2       ⎥
    ⎢               ⎥
    ⎢-√2         √2 ⎥
    ⎢────   0    ── ⎥
    ⎢ 2          2  ⎥
    ⎢               ⎥
    ⎢      -√2      ⎥
    ⎢1/2   ────  1/2⎥
    ⎣       2       ⎦

    >>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}),
    ... use_unicode=True)
    ⎡ √2    √6    √6   √2⎤
    ⎢ ──    ──    ──   ──⎥
    ⎢ 4     4     4    4 ⎥
    ⎢                    ⎥
    ⎢-√6   -√2    √2   √6⎥
    ⎢────  ────   ──   ──⎥
    ⎢ 4     4     4    4 ⎥
    ⎢                    ⎥
    ⎢ √6   -√2   -√2   √6⎥
    ⎢ ──   ────  ────  ──⎥
    ⎢ 4     4     4    4 ⎥
    ⎢                    ⎥
    ⎢-√2    √6   -√6   √2⎥
    ⎢────   ──   ────  ──⎥
    ⎣ 4     4     4    4 ⎦

    >>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2}),
    ... use_unicode=True)
    ⎡             √6            ⎤
    ⎢1/4   1/2    ──   1/2   1/4⎥
    ⎢             4             ⎥
    ⎢                           ⎥
    ⎢-1/2  -1/2   0    1/2   1/2⎥
    ⎢                           ⎥
    ⎢ √6                     √6 ⎥
    ⎢ ──    0    -1/2   0    ── ⎥
    ⎢ 4                      4  ⎥
    ⎢                           ⎥
    ⎢-1/2  1/2    0    -1/2  1/2⎥
    ⎢                           ⎥
    ⎢             √6            ⎥
    ⎢1/4   -1/2   ──   -1/2  1/4⎥
    ⎣             4             ⎦

    """
    M = [J - i for i in range(2 * J + 1)]
    d = zeros(2 * J + 1)
    for i, Mi in enumerate(M):
        for j, Mj in enumerate(M):

            # We get the maximum and minimum value of sigma.
            sigmamax = max([-Mi - Mj, J - Mj])
            sigmamin = min([0, J - Mi])

            dij = sqrt(
                factorial(J + Mi) * factorial(J - Mi) / factorial(J + Mj) /
                factorial(J - Mj))
            terms = [(-1)**(J - Mi - s) * binomial(J + Mj, J - Mi - s) *
                     binomial(J - Mj, s) * cos(beta / 2)**(2 * s + Mi + Mj) *
                     sin(beta / 2)**(2 * J - 2 * s - Mj - Mi)
                     for s in range(sigmamin, sigmamax + 1)]

            d[i, j] = dij * Add(*terms)

    return ImmutableMatrix(d)
Пример #15
0
def test_deterimant():
    assert ImmutableMatrix(4, 4, lambda i, j: i + j).det() == 0
Пример #16
0
def test_re():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) is nan

    assert re(oo) is oo
    assert re(-oo) is -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert unchanged(re, x)
    assert re(x * I) == -im(x)
    assert re(r * I) == 0
    assert re(r) == r
    assert re(i * I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x) + re(y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y * I) == re(x) - im(y)
    assert re(x + r * I) == re(x)

    assert re(log(2 * I)) == log(2)

    assert re((2 + I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i * r * x).diff(r) == re(i * x)
    assert re(i * r * x).diff(i) == I * r * im(x)

    assert re(
        sqrt(a +
             b * I)) == (a**2 + b**2)**Rational(1, 4) * cos(atan2(b, a) / 2)
    assert re(a * (2 + b * I)) == 2 * a

    assert re((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half

    assert re(x).rewrite(im) == x - S.ImaginaryUnit * im(x)
    assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit * im(y)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert re(S.ComplexInfinity) is S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A', n, m)
    assert re(A) == (S.Half) * (A + conjugate(A))

    A = Matrix([[1 + 4 * I, 2], [0, -3 * I]])
    assert re(A) == Matrix([[1, 2], [0, 0]])

    A = ImmutableMatrix([[1 + 3 * I, 3 - 2 * I], [0, 2 * I]])
    assert re(A) == ImmutableMatrix([[1, 3], [0, 0]])

    X = SparseMatrix([[2 * j + i * I for i in range(5)] for j in range(5)])
    assert re(X) - Matrix([[0, 0, 0, 0, 0], [2, 2, 2, 2, 2], [4, 4, 4, 4, 4],
                           [6, 6, 6, 6, 6], [8, 8, 8, 8, 8]
                           ]) == Matrix.zeros(5)

    assert im(X) - Matrix([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]
                           ]) == Matrix.zeros(5)

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m * I))
    assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
Пример #17
0
def test_ContinuousMarkovChain():
    T1 = Matrix([[S(-2), S(2), S.Zero], [S.Zero, S.NegativeOne, S.One],
                 [Rational(3, 2), Rational(3, 2),
                  S(-3)]])
    C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix(
        [[Rational(3, 19), Rational(12, 19),
          Rational(4, 19)]])

    T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero],
                 [S.Zero, S.One, -S.One]])
    C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols('t', positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix(
        [[S.Half + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2, 0],
         [S.Half - exp(-2 * t) / 2, S.Half + exp(-2 * t) / 2, 0],
         [
             S.Half - exp(-t) + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2,
             exp(-t)
         ]])
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert P(Eq(C2(1), 1), Eq(C2(0), 1),
                 evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2) / 2 + S.Half
    assert P(
        Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
        Eq(P(Eq(C2(1), 0)),
           S.Half)) == (Rational(1, 4) - exp(-2) / 4) * (exp(-2) / 2 + S.Half)
    assert P(
        Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
        (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
        Eq(P(Eq(C2(1), 0)), Rational(1, 4))
        & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
    assert E(C2(Rational(3, 2)),
             Eq(C2(0), 2)) == -exp(-3) / 2 + 2 * exp(Rational(-3, 2)) + S.Half
    assert variance(C2(Rational(3, 2)), Eq(
        C2(0),
        1)) == ((S.Half - exp(-3) / 2)**2 * (exp(-3) / 2 + S.Half) +
                (Rational(-1, 2) - exp(-3) / 2)**2 * (S.Half - exp(-3) / 2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)),
                              S.Half)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol('G', 3, 3)
    CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t * A)

    C3 = ContinuousMarkovChain(
        'C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
    assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2) / 2 + S.Half
    assert P(Eq(C3(1), Symbol('1')), Eq(C3(0),
                                        Symbol('1'))) == exp(-2) / 2 + S.Half

    #test probability queries
    G = Matrix([[-S(1), Rational(1, 10),
                 Rational(9, 10)], [Rational(2, 5), -S(1),
                                    Rational(3, 5)],
                [Rational(1, 2), Rational(1, 2), -S(1)]])
    C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
    assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862),
                                       0)).round(5) == Float(0.35469, 5)
    assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314),
                                          2)).round(5) == Float(0.32452, 5)
    assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6)
    assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)),
                 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14)
    assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)),
                 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14)
    assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)),
                 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14)
    assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174),
                                         1)) == P(Eq(C(10.912), C(5.243)),
                                                  Eq(C(2.174), 1))
    assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102),
                                      1)) == P(Lt(C(9.9), C(2.344)),
                                               Eq(C(1.102), 1))
    assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153),
                                       1)) == P(Le(C(1.008), C(7.87)),
                                                Eq(C(0.153), 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    query = P(Eq(C(a), b), Eq(C(c), d))
    assert query.subs({
        a: 3.65,
        b: 2,
        c: 1.78,
        d: 1
    }).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
    query_gt = P(Gt(C(a), b), Eq(C(c), d))
    query_le = P(Le(C(a), b), Eq(C(c), d))
    assert query_gt.subs({
        a: 13.2,
        b: 0,
        c: 3.29,
        d: 2
    }).evalf() + query_le.subs({
        a: 13.2,
        b: 0,
        c: 3.29,
        d: 2
    }).evalf() == 1
    query_ge = P(Ge(C(a), b), Eq(C(c), d))
    query_lt = P(Lt(C(a), b), Eq(C(c), d))
    assert query_ge.subs({
        a: 7.43,
        b: 1,
        c: 1.45,
        d: 0
    }).evalf() + query_lt.subs({
        a: 7.43,
        b: 1,
        c: 1.45,
        d: 0
    }).evalf() == 1

    #test issue 20078
    assert (2 * C(1) + 3 * C(1)).simplify() == 5 * C(1)
    assert (2 * C(1) - 3 * C(1)).simplify() == -C(1)
    assert (2 * (0.25 * C(1))).simplify() == 0.5 * C(1)
    assert (2 * C(1) * 0.25 * C(1)).simplify() == 0.5 * C(1)**2
    assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1) * C(1)**2
Пример #18
0
def test_bidiagonalize():
    M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    assert M.bidiagonalize() == M
    assert M.bidiagonalize(upper=False) == M
    assert M.bidiagonalize() == M
    assert M.bidiagonal_decomposition() == (M, M, M)
    assert M.bidiagonal_decomposition(upper=False) == (M, M, M)
    assert M.bidiagonalize() == M

    import random
    #Real Tests
    for real_test in range(2):
        test_values = []
        row = 2
        col = 2
        for _ in range(row * col):
            value = random.randint(-1000000000, 1000000000)
            test_values = test_values + [value]
        # L     -> Lower Bidiagonalization
        # M     -> Mutable Matrix
        # N     -> Immutable Matrix
        # 0     -> Bidiagonalized form
        # 1,2,3 -> Bidiagonal_decomposition matrices
        # 4     -> Product of 1 2 3
        M = Matrix(row, col, test_values)
        N = ImmutableMatrix(M)

        N1, N2, N3 = N.bidiagonal_decomposition()
        M1, M2, M3 = M.bidiagonal_decomposition()
        M0 = M.bidiagonalize()
        N0 = N.bidiagonalize()

        N4 = N1 * N2 * N3
        M4 = M1 * M2 * M3

        N2.simplify()
        N4.simplify()
        N0.simplify()

        M0.simplify()
        M2.simplify()
        M4.simplify()

        LM0 = M.bidiagonalize(upper=False)
        LM1, LM2, LM3 = M.bidiagonal_decomposition(upper=False)
        LN0 = N.bidiagonalize(upper=False)
        LN1, LN2, LN3 = N.bidiagonal_decomposition(upper=False)

        LN4 = LN1 * LN2 * LN3
        LM4 = LM1 * LM2 * LM3

        LN2.simplify()
        LN4.simplify()
        LN0.simplify()

        LM0.simplify()
        LM2.simplify()
        LM4.simplify()

        assert M == M4
        assert M2 == M0
        assert N == N4
        assert N2 == N0
        assert M == LM4
        assert LM2 == LM0
        assert N == LN4
        assert LN2 == LN0

    #Complex Tests
    for complex_test in range(2):
        test_values = []
        size = 2
        for _ in range(size * size):
            real = random.randint(-1000000000, 1000000000)
            comp = random.randint(-1000000000, 1000000000)
            value = real + comp * I
            test_values = test_values + [value]
        M = Matrix(size, size, test_values)
        N = ImmutableMatrix(M)
        # L     -> Lower Bidiagonalization
        # M     -> Mutable Matrix
        # N     -> Immutable Matrix
        # 0     -> Bidiagonalized form
        # 1,2,3 -> Bidiagonal_decomposition matrices
        # 4     -> Product of 1 2 3
        N1, N2, N3 = N.bidiagonal_decomposition()
        M1, M2, M3 = M.bidiagonal_decomposition()
        M0 = M.bidiagonalize()
        N0 = N.bidiagonalize()

        N4 = N1 * N2 * N3
        M4 = M1 * M2 * M3

        N2.simplify()
        N4.simplify()
        N0.simplify()

        M0.simplify()
        M2.simplify()
        M4.simplify()

        LM0 = M.bidiagonalize(upper=False)
        LM1, LM2, LM3 = M.bidiagonal_decomposition(upper=False)
        LN0 = N.bidiagonalize(upper=False)
        LN1, LN2, LN3 = N.bidiagonal_decomposition(upper=False)

        LN4 = LN1 * LN2 * LN3
        LM4 = LM1 * LM2 * LM3

        LN2.simplify()
        LN4.simplify()
        LN0.simplify()

        LM0.simplify()
        LM2.simplify()
        LM4.simplify()

        assert M == M4
        assert M2 == M0
        assert N == N4
        assert N2 == N0
        assert M == LM4
        assert LM2 == LM0
        assert N == LN4
        assert LN2 == LN0

    M = Matrix(18, 8, range(1, 145))
    M = M.applyfunc(lambda i: Float(i))
    assert M.bidiagonal_decomposition()[1] == M.bidiagonalize()
    assert M.bidiagonal_decomposition(upper=False)[1] == M.bidiagonalize(
        upper=False)
    a, b, c = M.bidiagonal_decomposition()
    diff = a * b * c - M
    assert abs(max(diff)) < 10**-12
Пример #19
0
def test_im():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) is nan

    assert im(oo * I) is oo
    assert im(-oo * I) is -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E * I) == E
    assert im(-E * I) == -E

    assert unchanged(im, x)
    assert im(x * I) == re(x)
    assert im(r * I) == r
    assert im(r) == 0
    assert im(i * I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x) + im(y)
    assert im(x + r) == im(x)
    assert im(x + r * I) == im(x) + r

    assert im(im(x) * I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y * I) == im(x) + re(y)
    assert im(x + r * I) == im(x) + r

    assert im(log(2 * I)) == pi / 2

    assert im((2 + I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i * r * x).diff(r) == im(i * x)
    assert im(i * r * x).diff(i) == -I * re(r * x)

    assert im(
        sqrt(a +
             b * I)) == (a**2 + b**2)**Rational(1, 4) * sin(atan2(b, a) / 2)
    assert im(a * (2 + b * I)) == a * b

    assert im((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2

    assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
    assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert im(S.ComplexInfinity) is S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A', n, m)

    assert im(A) == (S.One / (2 * I)) * (A - conjugate(A))

    A = Matrix([[1 + 4 * I, 2], [0, -3 * I]])
    assert im(A) == Matrix([[4, 0], [0, -3]])

    A = ImmutableMatrix([[1 + 3 * I, 3 - 2 * I], [0, 2 * I]])
    assert im(A) == ImmutableMatrix([[3, -2], [0, 2]])

    X = ImmutableSparseMatrix([[i * I + i for i in range(5)]
                               for i in range(5)])
    Y = SparseMatrix([[i for i in range(5)] for i in range(5)])
    assert im(X).as_immutable() == Y

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m * I))
    assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])