Пример #1
0
 def _eval_evalf(self, prec):
     from sympy.mpmath import mp, workprec
     from sympy import Expr
     z = self.args[0]._to_mpmath(prec)
     with workprec(prec):
         res = mp.airybi(z, derivative=1)
     return Expr._from_mpmath(res, prec)
Пример #2
0
    def apply(self, z, evaluation):
        '%(name)s[z__]'

        args = z.get_sequence()

        if len(args) != self.nargs:
            return

        # if no arguments are inexact attempt to use sympy
        if all(not x.is_inexact() for x in args):
            result = Expression(self.get_name(), *args).to_sympy()
            result = self.prepare_mathics(result)
            result = from_sympy(result)
            # evaluate leaves to convert e.g. Plus[2, I] -> Complex[2, 1]
            result = result.evaluate_leaves(evaluation)
        else:
            prec = min_prec(*args)
            with mpmath.workprec(prec):
                mpmath_args = [sympy2mpmath(x.to_sympy()) for x in args]
                if None in mpmath_args:
                    return
                try:
                    result = self.eval(*mpmath_args)
                    result = from_sympy(mpmath2sympy(result, prec))
                except ValueError, exc:
                    text = str(exc)
                    if text == 'gamma function pole':
                        return Symbol('ComplexInfinity')
                    else:
                        raise
                except ZeroDivisionError:
                    return
                except SpecialValueError, exc:
                    return Symbol(exc.name)
Пример #3
0
def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1 / g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        # Need to use at least quad precision because a lot of cancellation
        # might occur in the extrapolation process
        prec2 = 4 * prec
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec2) // term.q

        def summand(k, _term=[term]):
            if k:
                k = int(k)
                _term[0] *= MPZ(func1(k - 1))
                _term[0] //= MPZ(func2(k - 1))
            return make_mpf(from_man_exp(_term[0], -prec2))

        with workprec(prec):
            v = nsum(summand, [0, mpmath_inf], method="richardson")

        return v._mpf_
Пример #4
0
 def _eval_evalf(self, prec):
     from sympy.mpmath import mp, workprec
     from sympy import Expr
     z = self.args[0]._to_mpmath(prec)
     with workprec(prec):
         res = mp.airybi(z, derivative=1)
     return Expr._from_mpmath(res, prec)
Пример #5
0
def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        # Need to use at least quad precision because a lot of cancellation
        # might occur in the extrapolation process
        prec2 = 4*prec
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec2) // term.q

        def summand(k, _term=[term]):
            if k:
                k = int(k)
                _term[0] *= MPZ(func1(k - 1))
                _term[0] //= MPZ(func2(k - 1))
            return make_mpf(from_man_exp(_term[0], -prec2))

        with workprec(prec):
            v = nsum(summand, [0, mpmath_inf], method='richardson')

        return v._mpf_
Пример #6
0
    def apply(self, z, evaluation):
        '%(name)s[z__]'

        args = z.get_sequence()

        if len(args) != self.nargs:
            return

        # if no arguments are inexact attempt to use sympy
        if all(not x.is_inexact() for x in args):
            result = Expression(self.get_name(), *args).to_sympy()
            result = self.prepare_mathics(result)
            result = from_sympy(result)
            # evaluate leaves to convert e.g. Plus[2, I] -> Complex[2, 1]
            result = result.evaluate_leaves(evaluation)
        else:
            prec = min_prec(*args)
            with mpmath.workprec(prec):
                mpmath_args = [sympy2mpmath(x.to_sympy()) for x in args]
                if None in mpmath_args:
                    return
                try:
                    result = self.eval(*mpmath_args)
                    result = from_sympy(mpmath2sympy(result, prec))
                except ValueError, exc:
                    text = str(exc)
                    if text == 'gamma function pole':
                        return Symbol('ComplexInfinity')
                    else:
                        raise
                except ZeroDivisionError:
                    return
                except SpecialValueError, exc:
                    return Symbol(exc.name)
Пример #7
0
    def _eval_evalf(self, prec):
        # The default code is insufficient for polar arguments.
        # mpmath provides an optional argument "r", which evaluates
        # G(z**(1/r)). I am not sure what its intended use is, but we hijack it
        # here in the following way: to evaluate at a number z of |argument|
        # less than (say) n*pi, we put r=1/n, compute z' = root(z, n)
        # (carefully so as not to loose the branch information), and evaluate
        # G(z'**(1/r)) = G(z'**n) = G(z).
        from sympy.functions import exp_polar, ceiling
        from sympy import mpmath, Expr
        z = self.argument
        znum = self.argument._eval_evalf(prec)
        if znum.has(exp_polar):
            znum, branch = znum.as_coeff_mul(exp_polar)
            if len(branch) != 1:
                return
            branch = branch[0].args[0]/I
        else:
            branch = S(0)
        n = ceiling(abs(branch/S.Pi)) + 1
        znum = znum**(S(1)/n)*exp(I*branch / n)
        #print znum, branch, n

        # Convert all args to mpf or mpc
        try:
            [z, r, ap, bq] = [arg._to_mpmath(prec)
                    for arg in [znum, 1/n, self.args[0], self.args[1]]]
        except ValueError:
            return

        with mpmath.workprec(prec):
            v = mpmath.meijerg(ap, bq, z, r)

        return Expr._from_mpmath(v, prec)
Пример #8
0
 def _eval_evalf(self, prec):
     from sympy.mpmath import mp, workprec
     from sympy import Expr
     a = self.args[0]._to_mpmath(prec)
     z = self.args[1]._to_mpmath(prec)
     with workprec(prec):
         res = mp.gammainc(a, z, mp.inf)
     return Expr._from_mpmath(res, prec)
Пример #9
0
 def _eval_evalf(self, prec):
     from sympy.mpmath import mp, workprec
     from sympy import Expr
     a = self.args[0]._to_mpmath(prec)
     z = self.args[1]._to_mpmath(prec)
     with workprec(prec):
         res = mp.gammainc(a, z, mp.inf)
     return Expr._from_mpmath(res, prec)
Пример #10
0
    def _eval_evalf(self, prec):
        """Evaluate this complex root to the given precision. """
        with workprec(prec):
            g = self.poly.gen
            if not g.is_Symbol:
                d = Dummy('x')
                func = lambdify(d, self.expr.subs(g, d))
            else:
                func = lambdify(g, self.expr)

            interval = self._get_interval()
            if not self.is_real:
                # For complex intervals, we need to keep refining until the
                # imaginary interval is disjunct with other roots, that is,
                # until both ends get refined.
                ay = interval.ay
                by = interval.by
                while interval.ay == ay or interval.by == by:
                    interval = interval.refine()

            while True:
                if self.is_real:
                    x0 = mpf(str(interval.center))
                else:
                    x0 = mpc(*map(str, interval.center))
                try:
                    root = findroot(func, x0, verify=False)
                    # If the (real or complex) root is not in the 'interval',
                    # then keep refining the interval. This happens if findroot
                    # accidentally finds a different root outside of this
                    # interval because our initial estimate 'x0' was not close
                    # enough.
                    if self.is_real:
                        a = mpf(str(interval.a))
                        b = mpf(str(interval.b))
                        if a == b:
                            root = a
                            break
                        if not (a < root < b):
                            raise ValueError("Root not in the interval.")
                    else:
                        ax = mpf(str(interval.ax))
                        bx = mpf(str(interval.bx))
                        ay = mpf(str(interval.ay))
                        by = mpf(str(interval.by))
                        if ax == bx and ay == by:
                            root = ax + S.ImaginaryUnit * by
                            break
                        if not (ax < root.real < bx and ay < root.imag < by):
                            raise ValueError("Root not in the interval.")
                except ValueError:
                    interval = interval.refine()
                    continue
                else:
                    break

        return Float._new(root.real._mpf_,
                          prec) + I * Float._new(root.imag._mpf_, prec)
Пример #11
0
    def _eval_evalf(self, prec):
        """Evaluate this complex root to the given precision. """
        with workprec(prec):
            g = self.poly.gen
            if not g.is_Symbol:
                d = Dummy('x')
                func = lambdify(d, self.expr.subs(g, d))
            else:
                func = lambdify(g, self.expr)

            interval = self._get_interval()
            if not self.is_real:
                # For complex intervals, we need to keep refining until the
                # imaginary interval is disjunct with other roots, that is,
                # until both ends get refined.
                ay = interval.ay
                by = interval.by
                while interval.ay == ay or interval.by == by:
                    interval = interval.refine()

            while True:
                if self.is_real:
                    x0 = mpf(str(interval.center))
                else:
                    x0 = mpc(*map(str, interval.center))
                try:
                    root = findroot(func, x0, verify=False)
                    # If the (real or complex) root is not in the 'interval',
                    # then keep refining the interval. This happens if findroot
                    # accidentally finds a different root outside of this
                    # interval because our initial estimate 'x0' was not close
                    # enough.
                    if self.is_real:
                        a = mpf(str(interval.a))
                        b = mpf(str(interval.b))
                        if a == b:
                            root = a
                            break
                        if not (a < root < b):
                            raise ValueError("Root not in the interval.")
                    else:
                        ax = mpf(str(interval.ax))
                        bx = mpf(str(interval.bx))
                        ay = mpf(str(interval.ay))
                        by = mpf(str(interval.by))
                        if ax == bx and ay == by:
                            root = ax + S.ImaginaryUnit*by
                            break
                        if not (ax < root.real < bx and ay < root.imag < by):
                            raise ValueError("Root not in the interval.")
                except ValueError:
                    interval = interval.refine()
                    continue
                else:
                    break

        return Float._new(root.real._mpf_, prec) + I*Float._new(root.imag._mpf_, prec)
Пример #12
0
    def apply_N(self, k, precision, evaluation):
        'N[AiryBiZero[k_Integer], precision_]'

        prec = get_precision(precision, evaluation)
        k_int = k.get_int_value()

        with mpmath.workprec(prec):
            result = mpmath2sympy(mpmath.airybizero(k_int), prec)
        return from_sympy(result)
Пример #13
0
    def apply_N(self, k, precision, evaluation):
        'N[AiryBiZero[k_Integer], precision_]'

        prec = get_precision(precision, evaluation)
        k_int = k.get_int_value()

        with mpmath.workprec(prec):
            result = mpmath2sympy(mpmath.airybizero(k_int), prec)
        return from_sympy(result)
Пример #14
0
    def _eval_evalf(self, prec):
        m = self.args[0]

        if m.is_Integer and m.is_nonnegative:
            from sympy.mpmath import mp
            from sympy import Expr
            m = m._to_mpmath(prec)
            with workprec(prec):
                res = mp.eulernum(m)
            return Expr._from_mpmath(res, prec)
Пример #15
0
    def _eval_evalf(self, prec):
        m = self.args[0]

        if m.is_Integer and m.is_nonnegative:
            from sympy.mpmath import mp
            from sympy import Expr
            m = m._to_mpmath(prec)
            with workprec(prec):
                res = mp.eulernum(m)
            return Expr._from_mpmath(res, prec)
Пример #16
0
 def _eval_evalf(self, prec):
     # Note: works without this function by just calling
     #       mpmath for Legendre polynomials. But using
     #       the dedicated function directly is cleaner.
     from sympy.mpmath import mp, workprec
     from sympy import Expr
     n = self.args[0]._to_mpmath(prec)
     m = self.args[1]._to_mpmath(prec)
     theta = self.args[2]._to_mpmath(prec)
     phi = self.args[3]._to_mpmath(prec)
     with workprec(prec):
         res = mp.spherharm(n, m, theta, phi)
     return Expr._from_mpmath(res, prec)
Пример #17
0
 def _eval_evalf(self, prec):
     # Note: works without this function by just calling
     #       mpmath for Legendre polynomials. But using
     #       the dedicated function directly is cleaner.
     from sympy.mpmath import mp, workprec
     from sympy import Expr
     n = self.args[0]._to_mpmath(prec)
     m = self.args[1]._to_mpmath(prec)
     theta = self.args[2]._to_mpmath(prec)
     phi = self.args[3]._to_mpmath(prec)
     with workprec(prec):
         res = mp.spherharm(n, m, theta, phi)
     return Expr._from_mpmath(res, prec)
Пример #18
0
    def _eval_evalf(self, prec):
        # The default code is insufficient for polar arguments.
        # mpmath provides an optional argument "r", which evaluates
        # G(z**(1/r)). I am not sure what its intended use is, but we hijack it
        # here in the following way: to evaluate at a number z of |argument|
        # less than (say) n*pi, we put r=1/n, compute z' = root(z, n)
        # (carefully so as not to loose the branch information), and evaluate
        # G(z'**(1/r)) = G(z'**n) = G(z).
        from sympy.functions import exp_polar, ceiling
        from sympy import mpmath, Expr
        z = self.argument
        znum = self.argument._eval_evalf(prec)
        if znum.has(exp_polar):
            znum, branch = znum.as_coeff_mul(exp_polar)
            if len(branch) != 1:
                return
            branch = branch[0].args[0] / I
        else:
            branch = S(0)
        n = ceiling(abs(branch / S.Pi)) + 1
        znum = znum**(S(1) / n) * exp(I * branch / n)
        #print znum, branch, n

        # Convert all args to mpf or mpc
        try:
            [z, r, ap, bq] = [
                arg._to_mpmath(prec)
                for arg in [znum, 1 / n, self.args[0], self.args[1]]
            ]
        except ValueError:
            return

        with mpmath.workprec(prec):
            v = mpmath.meijerg(ap, bq, z, r)

        return Expr._from_mpmath(v, prec)
Пример #19
0
def do_integral(expr, prec, options):
    func = expr.args[0]
    x, xlow, xhigh = expr.args[1]
    if xlow == xhigh:
        xlow = xhigh = 0
    elif x not in func.free_symbols:
        # only the difference in limits matters in this case
        # so if there is a symbol in common that will cancel
        # out when taking the difference, then use that
        # difference
        if xhigh.free_symbols & xlow.free_symbols:
            diff = xhigh - xlow
            if not diff.free_symbols:
                xlow, xhigh = 0, diff

    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
    options['maxprec'] = min(oldmaxprec, 2*prec)

    with workprec(prec + 5):
        xlow = as_mpmath(xlow, prec + 15, options)
        xhigh = as_mpmath(xhigh, prec + 15, options)

        # Integration is like summation, and we can phone home from
        # the integrand function to update accuracy summation style
        # Note that this accuracy is inaccurate, since it fails
        # to account for the variable quadrature weights,
        # but it is better than nothing

        have_part = [False, False]
        max_real_term = [MINUS_INF]
        max_imag_term = [MINUS_INF]

        def f(t):
            re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})

            have_part[0] = re or have_part[0]
            have_part[1] = im or have_part[1]

            max_real_term[0] = max(max_real_term[0], fastlog(re))
            max_imag_term[0] = max(max_imag_term[0], fastlog(im))

            if im:
                return mpc(re or fzero, im)
            return mpf(re or fzero)

        if options.get('quad') == 'osc':
            A = C.Wild('A', exclude=[x])
            B = C.Wild('B', exclude=[x])
            D = C.Wild('D')
            m = func.match(C.cos(A*x + B)*D)
            if not m:
                m = func.match(C.sin(A*x + B)*D)
            if not m:
                raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
                  "or cos(A*x+B)*f(x) is required for oscillatory quadrature")
            period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
            result = quadosc(f, [xlow, xhigh], period=period)
            # XXX: quadosc does not do error detection yet
            quadrature_error = MINUS_INF
        else:
            result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
            quadrature_error = fastlog(quadrature_error._mpf_)

    options['maxprec'] = oldmaxprec

    if have_part[0]:
        re = result.real._mpf_
        if re == fzero:
            re, re_acc = scaled_zero(
                min(-prec, -max_real_term[0], -quadrature_error))
            re = scaled_zero(re)  # handled ok in evalf_integral
        else:
            re_acc = -max(max_real_term[0] - fastlog(re) -
                          prec, quadrature_error)
    else:
        re, re_acc = None, None

    if have_part[1]:
        im = result.imag._mpf_
        if im == fzero:
            im, im_acc = scaled_zero(
                min(-prec, -max_imag_term[0], -quadrature_error))
            im = scaled_zero(im)  # handled ok in evalf_integral
        else:
            im_acc = -max(max_imag_term[0] - fastlog(im) -
                          prec, quadrature_error)
    else:
        im, im_acc = None, None

    result = re, im, re_acc, im_acc
    return result
Пример #20
0
    def apply(self, items, evaluation):
        'Power[items__]'

        items_sequence = items.get_sequence()

        if len(items_sequence) == 2:
            x, y = items_sequence
        else:
            return Expression('Power', *items_sequence)

        if y.get_int_value() == 1:
            return x
        elif x.get_int_value() == 1:
            return x
        elif y.get_int_value() == 0:
            if x.get_int_value() == 0:
                evaluation.message('Power', 'indet', Expression('Power', x, y))
                return Symbol('Indeterminate')
            else:
                return Integer(1)

        elif x.has_form('Power', 2) and isinstance(y, Integer):
            return Expression('Power', x.leaves[0],
                              Expression('Times', x.leaves[1], y))
        elif x.has_form('Times', None) and isinstance(y, Integer):
            return Expression('Times', *[
                Expression('Power', leaf, y) for leaf in x.leaves])

        elif (isinstance(x, Number) and isinstance(y, Number)
              and not (x.is_inexact() or y.is_inexact())):

            sym_x, sym_y = x.to_sympy(), y.to_sympy()

            try:
                if sym_y >= 0:
                    result = sym_x ** sym_y
                else:
                    if sym_x == 0:
                        evaluation.message('Power', 'infy')
                        return Symbol('ComplexInfinity')
                    result = sympy.Integer(1) / (sym_x ** (-sym_y))
                if isinstance(result, sympy.Pow):
                    result = result.simplify()
                    args = [from_sympy(expr) for expr in result.as_base_exp()]
                    result = Expression('Power', *args)
                    result = result.evaluate_leaves(evaluation)
                    return result

                return from_sympy(result)
            except ValueError:
                return Expression('Power', x, y)
            except ZeroDivisionError:
                evaluation.message('Power', 'infy')
                return Symbol('ComplexInfinity')

        elif (isinstance(x, Number) and isinstance(y, Number)
              and (x.is_inexact() or y.is_inexact())):
            try:
                prec = min(max(x.get_precision(), 64), max(
                    y.get_precision(), 64))
                with mpmath.workprec(prec):
                    mp_x = sympy2mpmath(x.to_sympy())
                    mp_y = sympy2mpmath(y.to_sympy())
                    result = mp_x ** mp_y
                    if isinstance(result, mpmath.mpf):
                        return Real(str(result), prec)
                    elif isinstance(result, mpmath.mpc):
                        return Complex(str(result.real),
                                       str(result.imag), prec)
            except ZeroDivisionError:
                evaluation.message('Power', 'infy')
                return Symbol('ComplexInfinity')
        else:
            numerified_items = items.numerify(evaluation)
            return Expression('Power', *numerified_items.get_sequence())
Пример #21
0
def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if prec == float('inf'):
        raise NotImplementedError('does not support inf prec')

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    term = expr.subs(n, 0)
    if not term.is_Rational:
        raise NotImplementedError("Non rational term functionality is not implemented.")

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        vold = None
        ndig = prec_to_dps(prec)
        while True:
            # Need to use at least quad precision because a lot of cancellation
            # might occur in the extrapolation process; we check the answer to
            # make sure that the desired precision has been reached, too.
            prec2 = 4*prec
            term0 = (MPZ(term.p) << prec2) // term.q

            def summand(k, _term=[term0]):
                if k:
                    k = int(k)
                    _term[0] *= MPZ(func1(k - 1))
                    _term[0] //= MPZ(func2(k - 1))
                return make_mpf(from_man_exp(_term[0], -prec2))

            with workprec(prec):
                v = nsum(summand, [0, mpmath_inf], method='richardson')
            vf = C.Float(v, ndig)
            if vold is not None and vold == vf:
                break
            prec += prec  # double precision each time
            vold = vf

        return v._mpf_
Пример #22
0
    def apply(self, items, evaluation):
        'Power[items__]'

        items_sequence = items.get_sequence()

        if len(items_sequence) == 2:
            x, y = items_sequence
        else:
            return Expression('Power', *items_sequence)

        if y.get_int_value() == 1:
            return x
        elif x.get_int_value() == 1:
            return x
        elif y.get_int_value() == 0:
            if x.get_int_value() == 0:
                evaluation.message('Power', 'indet', Expression('Power', x, y))
                return Symbol('Indeterminate')
            else:
                return Integer(1)

        elif x.has_form('Power', 2) and isinstance(y, Integer):
            return Expression('Power', x.leaves[0],
                              Expression('Times', x.leaves[1], y))
        elif x.has_form('Times', None) and isinstance(y, Integer):
            return Expression(
                'Times', *[Expression('Power', leaf, y) for leaf in x.leaves])

        elif (isinstance(x, Number) and isinstance(y, Number)
              and not (x.is_inexact() or y.is_inexact())):

            sym_x, sym_y = x.to_sympy(), y.to_sympy()

            try:
                if sym_y >= 0:
                    result = sym_x**sym_y
                else:
                    if sym_x == 0:
                        evaluation.message('Power', 'infy')
                        return Symbol('ComplexInfinity')
                    result = sympy.Integer(1) / (sym_x**(-sym_y))
                if isinstance(result, sympy.Pow):
                    result = result.simplify()
                    args = [from_sympy(expr) for expr in result.as_base_exp()]
                    result = Expression('Power', *args)
                    result = result.evaluate_leaves(evaluation)
                    return result

                return from_sympy(result)
            except ValueError:
                return Expression('Power', x, y)
            except ZeroDivisionError:
                evaluation.message('Power', 'infy')
                return Symbol('ComplexInfinity')

        elif (isinstance(x, Number) and isinstance(y, Number)
              and (x.is_inexact() or y.is_inexact())):
            try:
                prec = min(max(x.get_precision(), 64),
                           max(y.get_precision(), 64))
                with mpmath.workprec(prec):
                    mp_x = sympy2mpmath(x.to_sympy())
                    mp_y = sympy2mpmath(y.to_sympy())
                    result = mp_x**mp_y
                    if isinstance(result, mpmath.mpf):
                        return Real(str(result), prec)
                    elif isinstance(result, mpmath.mpc):
                        return Complex(str(result.real), str(result.imag),
                                       prec)
            except ZeroDivisionError:
                evaluation.message('Power', 'infy')
                return Symbol('ComplexInfinity')
        else:
            numerified_items = items.numerify(evaluation)
            return Expression('Power', *numerified_items.get_sequence())
Пример #23
0
def do_integral(expr, prec, options):
    func = expr.args[0]
    x, xlow, xhigh = expr.args[1]
    if xlow == xhigh:
        xlow = xhigh = 0
    elif x not in func.free_symbols:
        # only the difference in limits matters in this case
        # so if there is a symbol in common that will cancel
        # out when taking the difference, then use that
        # difference
        if xhigh.free_symbols & xlow.free_symbols:
            diff = xhigh - xlow
            if not diff.free_symbols:
                xlow, xhigh = 0, diff

    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
    options['maxprec'] = min(oldmaxprec, 2*prec)

    with workprec(prec + 5):
        xlow = as_mpmath(xlow, prec + 15, options)
        xhigh = as_mpmath(xhigh, prec + 15, options)

        # Integration is like summation, and we can phone home from
        # the integrand function to update accuracy summation style
        # Note that this accuracy is inaccurate, since it fails
        # to account for the variable quadrature weights,
        # but it is better than nothing

        have_part = [False, False]
        max_real_term = [MINUS_INF]
        max_imag_term = [MINUS_INF]

        def f(t):
            re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})

            have_part[0] = re or have_part[0]
            have_part[1] = im or have_part[1]

            max_real_term[0] = max(max_real_term[0], fastlog(re))
            max_imag_term[0] = max(max_imag_term[0], fastlog(im))

            if im:
                return mpc(re or fzero, im)
            return mpf(re or fzero)

        if options.get('quad') == 'osc':
            A = C.Wild('A', exclude=[x])
            B = C.Wild('B', exclude=[x])
            D = C.Wild('D')
            m = func.match(C.cos(A*x + B)*D)
            if not m:
                m = func.match(C.sin(A*x + B)*D)
            if not m:
                raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
                  "or cos(A*x+B)*f(x) is required for oscillatory quadrature")
            period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
            result = quadosc(f, [xlow, xhigh], period=period)
            # XXX: quadosc does not do error detection yet
            quadrature_error = MINUS_INF
        else:
            result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
            quadrature_error = fastlog(quadrature_error._mpf_)

    options['maxprec'] = oldmaxprec

    if have_part[0]:
        re = result.real._mpf_
        if re == fzero:
            re, re_acc = scaled_zero(
                min(-prec, -max_real_term[0], -quadrature_error))
            re = scaled_zero(re)  # handled ok in evalf_integral
        else:
            re_acc = -max(max_real_term[0] - fastlog(re) -
                          prec, quadrature_error)
    else:
        re, re_acc = None, None

    if have_part[1]:
        im = result.imag._mpf_
        if im == fzero:
            im, im_acc = scaled_zero(
                min(-prec, -max_imag_term[0], -quadrature_error))
            im = scaled_zero(im)  # handled ok in evalf_integral
        else:
            im_acc = -max(max_imag_term[0] - fastlog(im) -
                          prec, quadrature_error)
    else:
        im, im_acc = None, None

    result = re, im, re_acc, im_acc
    return result