Пример #1
1
def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle()
    pa.mass = m
    pa.point = P
    BL = [pa]

    KM = Kane(N)
    KM.coords([q])
    KM.speeds([u])
    KM.kindiffeq(kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
Пример #2
1
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)

    assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
Пример #3
1
def test_linearize_pendulum_lagrange_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, q1d*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Solve for eom with Lagranges method
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()

    # Linearize
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)

    assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])
Пример #4
1
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the Kane docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle()
    pa.mass = m
    pa.point = P
    BL = [pa]

    KM = Kane(N)
    KM.coords([q])
    KM.speeds([u])
    KM.kindiffeq(kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
    assert KM.linearize() == (Matrix([[0, 1], [k, c]]), Matrix([]))
Пример #5
1
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
        q2 - c2 * u2) * N.x)]
    pa1 = Particle('pa1', P1, m)
    pa2 = Particle('pa2', P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)
Пример #6
1
def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in Kane. The inertia of the pendulum is
    # defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity        = symbols('g')
    k, ls          = symbols('k ls')
    a, mA, mC      = symbols('a mA mC')
    F              = dynamicsymbols('F')
    Ix, Iy, Iz     = symbols('Ix Iy Iz')

    # Declaring the Generalized coordinates and speeds
    q1, q2   = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2   = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)

    # Creating reference frames
    N = ReferenceFrame('N')
    A = ReferenceFrame('A')

    A.orient(N, 'Axis', [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point('O')

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C  = O.locatenew('C',  q1 * N.x)
    Ao = C.locatenew('Ao', a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart     = Particle('Cart', C, mC)
    Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs  = [q1d - u1, q2d - u2]

    bodyList  = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA),
                 (C,  -N.y * gravity * mC),
                 (C,  -N.x * k * (q1 - ls)),
                 (C,   N.x * F)]

    km=Kane(N)
    km.coords([q1, q2])
    km.speeds([u1, u2])
    km.kindiffeq(kindiffs)
    (fr,frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == -Iz
Пример #7
1
def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of Kane. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3  = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^
        R.ang_vel_in(N)))

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody()
    BodyD.mc = Dmc
    BodyD.inertia = (I, Dmc)
    BodyD.frame = R
    BodyD.mass = m
    BodyList = [BodyD]

    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3, u4, u5])
    KM.kindiffeq(kd)
    kdd = KM.kindiffdict()
    (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    KM2 = Kane(N)
    KM2.coords([q1, q2, q3])
    KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
    KM2.kindiffeq(kd)
    (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    assert fr.expand() == fr2.expand()
    assert frstar.expand() == frstar2.expand()
Пример #8
0
def test_rigidbody():
    m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega')
    A = ReferenceFrame('A')
    A2 = ReferenceFrame('A2')
    P = Point('P')
    P2 = Point('P2')
    I = Dyadic([])
    I2 = Dyadic([])
    B = RigidBody('B', P, A, m, (I, P))
    assert B.mass == m
    assert B.frame == A
    assert B.masscenter == P
    assert B.inertia == (I, B.masscenter)

    B.mass = m2
    B.frame = A2
    B.masscenter = P2
    B.inertia = (I2, B.masscenter)
    assert B.mass == m2
    assert B.frame == A2
    assert B.masscenter == P2
    assert B.inertia == (I2, B.masscenter)
    assert B.masscenter == P2
    assert B.inertia == (I2, B.masscenter)

    # Testing linear momentum function assuming A2 is the inertial frame
    N = ReferenceFrame('N')
    P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
    assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
Пример #9
0
def test_pendulum_angular_momentum():
    """Consider a pendulum of length OA = 2a, of mass m as a rigid body of
    center of mass G (OG = a) which turn around (O,z). The angle between the
    reference frame R and the rod is q.  The inertia of the body is I =
    (G,0,ma^2/3,ma^2/3). """

    m, a = symbols('m, a')
    q = dynamicsymbols('q')

    R = ReferenceFrame('R')
    R1 = R.orientnew('R1', 'Axis', [q, R.z])
    R1.set_ang_vel(R, q.diff() * R.z)

    I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)

    O = Point('O')

    A = O.locatenew('A', 2*a * R1.x)
    G = O.locatenew('G', a * R1.x)

    S = RigidBody('S', G, R1, m, (I, G))

    O.set_vel(R, 0)
    A.v2pt_theory(O, R, R1)
    G.v2pt_theory(O, R, R1)

    assert (4 * m * a**2 / 3 * q.diff() * R.z -
            S.angular_momentum(O, R).express(R)) == 0
Пример #10
0
def test_linear_momentum():
    N = ReferenceFrame("N")
    Ac = Point("Ac")
    Ac.set_vel(N, 25 * N.y)
    I = outer(N.x, N.x)
    A = RigidBody("A", Ac, N, 20, (I, Ac))
    P = Point("P")
    Pa = Particle("Pa", P, 1)
    Pa.point.set_vel(N, 10 * N.x)
    assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
Пример #11
0
def test_linear_momentum():
    N = ReferenceFrame('N')
    Ac = Point('Ac')
    Ac.set_vel(N, 25 * N.y)
    I = outer(N.x, N.x)
    A = RigidBody('A', Ac, N, 20, (I, Ac))
    P = Point('P')
    Pa = Particle('Pa', P, 1)
    Pa.point.set_vel(N, 10 * N.x)
    assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
Пример #12
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and 3
    # speed variables are need to describe this system, along with the
    # disc's mass and radius, and the local gravity.
    q1, q2, q3 = dynamicsymbols('q1 q2 q3')
    q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # Forming the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))

    # Finally we form the equations of motion, using the same steps we did
    # before. Supply the Lagrangian, the generalized speeds.
    BodyD.set_potential_energy(- m * g * r * cos(q2))
    Lag = Lagrangian(N, BodyD)
    q = [q1, q2, q3]
    q1 = Function('q1')
    q2 = Function('q2')
    q3 = Function('q3')
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()
    RHS = l.rhs()
    RHS.simplify()
    t = symbols('t')

    assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0])
    assert RHS[4].simplify() == (-8*g*sin(q2(t)) + 5*r*sin(2*q2(t)
        )*Derivative(q1(t), t)**2 + 12*r*cos(q2(t))*Derivative(q1(t), t
        )*Derivative(q3(t), t))/(10*r)
    assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t)
        )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t))
        )*Derivative(q2(t), t)
Пример #13
0
def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of KanesMethod. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
                     kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
                      u_auxiliary=[u4, u5])
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    frstar.simplify()
    frstar2.simplify()

    assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
    assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
Пример #14
0
def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in KanesMethod. The inertia of the
    # pendulum is defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity = symbols("g")
    k, ls = symbols("k ls")
    a, mA, mC = symbols("a mA mC")
    F = dynamicsymbols("F")
    Ix, Iy, Iz = symbols("Ix Iy Iz")

    # Declaring the Generalized coordinates and speeds
    q1, q2 = dynamicsymbols("q1 q2")
    q1d, q2d = dynamicsymbols("q1 q2", 1)
    u1, u2 = dynamicsymbols("u1 u2")
    u1d, u2d = dynamicsymbols("u1 u2", 1)

    # Creating reference frames
    N = ReferenceFrame("N")
    A = ReferenceFrame("A")

    A.orient(N, "Axis", [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point("O")

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C = O.locatenew("C", q1 * N.x)
    Ao = C.locatenew("Ao", a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart = Particle("Cart", C, mC)
    Pendulum = RigidBody("Pendulum", Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs = [q1d - u1, q2d - u2]

    bodyList = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA), (C, -N.y * gravity * mC), (C, -N.x * k * (q1 - ls)), (C, N.x * F)]

    km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr, frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == Iz
Пример #15
0
def test_point_a2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    qdd = dynamicsymbols('q', 2)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.a2pt_theory(O, N, B) == 0
    P.set_pos(O, B.x)
    assert P.a2pt_theory(O, N, B) == (-qd**2) * B.x + (qdd) * B.y
Пример #16
0
def test_linear_momentum():
    N = ReferenceFrame('N')
    Ac = Point('Ac')
    Ac.set_vel(N, 25 * N.y)
    I = outer(N.x, N.x)
    A = RigidBody('A', Ac, N, 20, (I, Ac))
    P = Point('P')
    Pa = Particle('Pa', P, 1)
    Pa.point.set_vel(N, 10 * N.x)
    raises(TypeError, lambda: linear_momentum(A, A, Pa))
    raises(TypeError, lambda: linear_momentum(N, N, Pa))
    assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
Пример #17
0
class RootLink(Link):
    """TODO
    """
    def __init__(self, linkage):
        super(RootLink, self).__init__(linkage, 'root')
        # TODO rename to avoid name conflicts, or inform the user that 'N' is
        # taken.
        self._frame = ReferenceFrame('N')
        self._origin = Point('NO')
        self._origin.set_vel(self._frame, 0)
        # TODO need to set_acc?
        self._origin.set_acc(self._frame, 0)
Пример #18
0
def get_equations(m_val, g_val, l_val):
    # This function body is copyied from:
    # http://www.pydy.org/examples/double_pendulum.html
    # Retrieved 2015-09-29
    from sympy import symbols
    from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
                                         Particle, KanesMethod)

    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, u1 * N.z)
    B.set_ang_vel(N, u2 * N.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    kd = [q1d - u1, q2d - u2]
    FL = [(P, m * g * N.x), (R, m * g * N.x)]
    BL = [ParP, ParR]

    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)

    try:
        (fr, frstar) = KM.kanes_equations(bodies=BL, loads=FL)
    except TypeError:
        (fr, frstar) = KM.kanes_equations(FL, BL)
    kdd = KM.kindiffdict()
    mm = KM.mass_matrix_full
    fo = KM.forcing_full
    qudots = mm.inv() * fo
    qudots = qudots.subs(kdd)
    qudots.simplify()
    # Edit:
    depv = [q1, q2, u1, u2]
    subs = list(zip([m, g, l], [m_val, g_val, l_val]))
    return zip(depv, [expr.subs(subs) for expr in qudots])
Пример #19
0
def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of Kane. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N,
                  R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N)))

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [q1d - u3 / cos(q2), q2d - u1, q3d - u2 + u3 * tan(q2)]

    ForceList = [(Dmc, -m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3, u4, u5])
    KM.kindiffeq(kd)
    (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    KM2 = Kane(N)
    KM2.coords([q1, q2, q3])
    KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
    KM2.kindiffeq(kd)
    (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    assert fr.expand() == fr2.expand()
    assert frstar.expand() == frstar2.expand()
Пример #20
0
def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of KanesMethod. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
                     kd_eqs=kd)
    with warns_deprecated_sympy():
        (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
                      u_auxiliary=[u4, u5])
    with warns_deprecated_sympy():
        (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    frstar.simplify()
    frstar2.simplify()

    assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
    assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
Пример #21
0
def test_point_v2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.v2pt_theory(O, N, B) == 0
    P = O.locatenew('P', B.x)
    assert P.v2pt_theory(O, N, B) == (qd * B.z ^ B.x)
    O.set_vel(N, N.x)
    assert P.v2pt_theory(O, N, B) == N.x + qd * B.y
Пример #22
0
def test_point_v2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.v2pt_theory(O, N, B) == 0
    P = O.locatenew('P', B.x)
    assert P.v2pt_theory(O, N, B) == (qd * B.z ^ B.x)
    O.set_vel(N, N.x)
    assert P.v2pt_theory(O, N, B) == N.x + qd * B.y
Пример #23
0
def test_dub_pen():

    # The system considered is the double pendulum. Like in the
    # test of the simple pendulum above, we begin by creating the generalized
    # coordinates and the simple generalized speeds and accelerations which
    # will be used later. Following this we create frames and points necessary
    # for the kinematics. The procedure isn't explicitly explained as this is
    # similar to the simple  pendulum. Also this is documented on the pydy.org
    # website.
    q1, q2 = dynamicsymbols("q1 q2")
    q1d, q2d = dynamicsymbols("q1 q2", 1)
    q1dd, q2dd = dynamicsymbols("q1 q2", 2)
    u1, u2 = dynamicsymbols("u1 u2")
    u1d, u2d = dynamicsymbols("u1 u2", 1)
    l, m, g = symbols("l m g")

    N = ReferenceFrame("N")
    A = N.orientnew("A", "Axis", [q1, N.z])
    B = N.orientnew("B", "Axis", [q2, N.z])

    A.set_ang_vel(N, q1d * A.z)
    B.set_ang_vel(N, q2d * A.z)

    O = Point("O")
    P = O.locatenew("P", l * A.x)
    R = P.locatenew("R", l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle("ParP", P, m)
    ParR = Particle("ParR", R, m)

    ParP.potential_energy = -m * g * l * cos(q1)
    ParR.potential_energy = -m * g * l * cos(q1) - m * g * l * cos(q2)
    L = Lagrangian(N, ParP, ParR)
    lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
    lm.form_lagranges_equations()

    assert (simplify(l * m *
                     (2 * g * sin(q1) + l * sin(q1) * sin(q2) * q2dd +
                      l * sin(q1) * cos(q2) * q2d**2 - l * sin(q2) * cos(q1) *
                      q2d**2 + l * cos(q1) * cos(q2) * q2dd + 2 * l * q1dd) -
                     lm.eom[0]) == 0)
    assert (simplify(l * m *
                     (g * sin(q2) + l * sin(q1) * sin(q2) * q1dd -
                      l * sin(q1) * cos(q2) * q1d**2 + l * sin(q2) * cos(q1) *
                      q1d**2 + l * cos(q1) * cos(q2) * q1dd + l * q2dd) -
                     lm.eom[1]) == 0)
    assert lm.bodies == [ParP, ParR]
Пример #24
0
def test_particle():
    m, m2, v1, v2, v3, r = symbols('m m2 v1 v2 v3 r')
    P = Point('P')
    P2 = Point('P2')
    p = Particle('pa', P, m)
    assert p.mass == m
    assert p.point == P
    # Test the mass setter
    p.mass = m2
    assert p.mass == m2
    # Test the point setter
    p.point = P2
    assert p.point == P2
    # Test the linear momentum function
    N = ReferenceFrame('N')
    O = Point('O')
    P2.set_pos(O, r * N.y)
    P2.set_vel(N, v1 * N.x)
    assert p.linearmomentum(N) == m2 * v1 * N.x
    assert p.angularmomentum(O, N) == -m2 * r *v1 * N.z
    P2.set_vel(N, v2 * N.y)
    assert p.linearmomentum(N) == m2 * v2 * N.y
    assert p.angularmomentum(O, N) == 0
    P2.set_vel(N, v3 * N.z)
    assert p.linearmomentum(N) == m2 * v3 * N.z
    assert p.angularmomentum(O, N) == m2 * r * v3 * N.x
    P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
    assert p.linearmomentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
    assert p.angularmomentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z)
Пример #25
0
def test_dub_pen():

    # The system considered is the double pendulum. Like in the
    # test of the simple pendulum above, we begin by creating the generalized
    # coordinates and the simple generalized speeds and accelerations which
    # will be used later. Following this we create frames and points necessary
    # for the kinematics. The procedure isn't explicitly explained as this is
    # similar to the simple  pendulum. Also this is documented on the pydy.org
    # website.
    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    q1dd, q2dd = dynamicsymbols('q1 q2', 2)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, q1d * A.z)
    B.set_ang_vel(N, q2d * A.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    ParP.set_potential_energy(-m * g * l * cos(q1))
    ParR.set_potential_energy(-m * g * l * cos(q1) - m * g * l * cos(q2))
    L = Lagrangian(N, ParP, ParR)
    lm = LagrangesMethod(L, [q1, q2])
    lm.form_lagranges_equations()

    assert expand(l * m *
                  (2 * g * sin(q1) + l * sin(q1) * sin(q2) * q2dd +
                   l * sin(q1) * cos(q2) * q2d**2 - l * sin(q2) * cos(q1) *
                   q2d**2 + l * cos(q1) * cos(q2) * q2dd + 2 * l * q1dd) -
                  (simplify(lm.eom[0]))) == 0
    assert expand((l * m *
                   (g * sin(q2) + l * sin(q1) * sin(q2) * q1dd - l * sin(q1) *
                    cos(q2) * q1d**2 + l * sin(q2) * cos(q1) * q1d**2 +
                    l * cos(q1) * cos(q2) * q1dd + l * q2dd)) -
                  (simplify(lm.eom[1]))) == 0
Пример #26
0
def get_equations(m_val, g_val, l_val):
    # This function body is copyied from:
    # http://www.pydy.org/examples/double_pendulum.html
    # Retrieved 2015-09-29
    from sympy import symbols
    from sympy.physics.mechanics import (
        dynamicsymbols, ReferenceFrame, Point, Particle, KanesMethod
    )

    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, u1 * N.z)
    B.set_ang_vel(N, u2 * N.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    kd = [q1d - u1, q2d - u2]
    FL = [(P, m * g * N.x), (R, m * g * N.x)]
    BL = [ParP, ParR]

    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)

    (fr, frstar) = KM.kanes_equations(FL, BL)
    kdd = KM.kindiffdict()
    mm = KM.mass_matrix_full
    fo = KM.forcing_full
    qudots = mm.inv() * fo
    qudots = qudots.subs(kdd)
    qudots.simplify()
    # Edit:
    depv = [q1, q2, u1, u2]
    subs = list(zip([m, g, l], [m_val, g_val, l_val]))
    return zip(depv, [expr.subs(subs) for expr in qudots])
Пример #27
0
def test_particle():
    m, m2, v1, v2, v3, r, g, h = symbols('m m2 v1 v2 v3 r g h')
    P = Point('P')
    P2 = Point('P2')
    p = Particle('pa', P, m)
    assert p.mass == m
    assert p.point == P
    # Test the mass setter
    p.mass = m2
    assert p.mass == m2
    # Test the point setter
    p.point = P2
    assert p.point == P2
    # Test the linear momentum function
    N = ReferenceFrame('N')
    O = Point('O')
    P2.set_pos(O, r * N.y)
    P2.set_vel(N, v1 * N.x)
    assert p.linear_momentum(N) == m2 * v1 * N.x
    assert p.angular_momentum(O, N) == -m2 * r *v1 * N.z
    P2.set_vel(N, v2 * N.y)
    assert p.linear_momentum(N) == m2 * v2 * N.y
    assert p.angular_momentum(O, N) == 0
    P2.set_vel(N, v3 * N.z)
    assert p.linear_momentum(N) == m2 * v3 * N.z
    assert p.angular_momentum(O, N) == m2 * r * v3 * N.x
    P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
    assert p.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
    assert p.angular_momentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z)
    p.set_potential_energy(m * g * h)
    assert p.potential_energy == m * g * h
    # TODO make the result not be system-dependent
    assert p.kinetic_energy(
        N) in [m2*(v1**2 + v2**2 + v3**2)/2,
        m2 * v1**2 / 2 + m2 * v2**2 / 2 + m2 * v3**2 / 2]
Пример #28
0
def second_order_system():
    # from sympy.printing.pycode import NumPyPrinter, pycode
    coordinates = dynamicsymbols('q:1')  # Generalized coordinates
    speeds = dynamicsymbols('u:1')  # Generalized speeds
    # Force applied to the cart
    cart_thrust = dynamicsymbols('thrust')

    m = sp.symbols('m:1')         # Mass of each bob
    g, t = sp.symbols('g t')
    # Gravity and time
    ref_frame = ReferenceFrame('I')     # Inertial reference frame
    origin = Point('O')                 # Origin point
    origin.set_vel(ref_frame, 0)        # Origin's velocity is zero

    P0 = Point('P0')                            # Hinge point of top link
    # Set the position of P0
    P0.set_pos(origin, coordinates[0] * ref_frame.x)
    P0.set_vel(ref_frame, speeds[0] * ref_frame.x)   # Set the velocity of P0
    Pa0 = Particle('Pa0', P0, m[0])             # Define a particle at P0

    # List to hold the n + 1 frames
    frames = [ref_frame]
    points = [P0]                             # List to hold the n + 1 points
    # List to hold the n + 1 particles
    particles = [Pa0]

    # List to hold the n + 1 applied forces, including the input force, f
    applied_forces = [(P0, cart_thrust * ref_frame.x - m[0] * g *
                       ref_frame.y)]
    # List to hold kinematic ODE's
    kindiffs = [coordinates[0].diff(t) - speeds[0]]

    # Initialize the object
    kane = KanesMethod(ref_frame, q_ind=coordinates,
                       u_ind=speeds, kd_eqs=kindiffs)
    # Generate EoM's fr + frstar = 0
    fr, frstar = kane.kanes_equations(particles, applied_forces)

    state = coordinates + speeds
    gain = [cart_thrust]

    kindiff_dict = kane.kindiffdict()
    M = kane.mass_matrix_full.subs(kindiff_dict)
    F = kane.forcing_full.subs(kindiff_dict)

    static_parameters = [g, m[0]]

    transfer = M.inv() * F
    return DynamicSystem(state, gain, static_parameters, transfer)
Пример #29
0
def test_rigidbody2():
    M, v, r, omega = dynamicsymbols('M v r omega')
    N = ReferenceFrame('N')
    b = ReferenceFrame('b')
    b.set_ang_vel(N, omega * b.x)
    P = Point('P')
    I = outer (b.x, b.x)
    Inertia_tuple = (I, P)
    B = RigidBody('B', P, b, M, Inertia_tuple)
    P.set_vel(N, v * b.x)
    assert B.angularmomentum(P, N) == omega * b.x
    O = Point('O')
    O.set_vel(N, v * b.x)
    P.set_pos(O, r * b.y)
    assert B.angularmomentum(O, N) == omega * b.x - M*v*r*b.z
Пример #30
0
def test_point_v1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.y
    O.set_vel(N, N.x)
    assert P.v1pt_theory(O, N, B) == N.x + qd * B.y
    P.set_vel(B, B.z)
    assert P.v1pt_theory(O, N, B) == B.z + N.x + qd * B.y
Пример #31
0
def test_point_v1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.y
    O.set_vel(N, N.x)
    assert P.v1pt_theory(O, N, B) == N.x + qd * B.y
    P.set_vel(B, B.z)
    assert P.v1pt_theory(O, N, B) == B.z + N.x + qd * B.y
Пример #32
0
def test_linearize_rolling_disc_lagrange():
    q1, q2, q3 = q = dynamicsymbols("q1 q2 q3")
    q1d, q2d, q3d = qd = dynamicsymbols("q1 q2 q3", 1)
    r, m, g = symbols("r m g")

    N = ReferenceFrame("N")
    Y = N.orientnew("Y", "Axis", [q1, N.z])
    L = Y.orientnew("L", "Axis", [q2, Y.x])
    R = L.orientnew("R", "Axis", [q3, L.y])

    C = Point("C")
    C.set_vel(N, 0)
    Dmc = C.locatenew("Dmc", r * L.z)
    Dmc.v2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r ** 2, m / 2 * r ** 2, m / 4 * r ** 2)
    BodyD = RigidBody("BodyD", Dmc, R, m, (I, Dmc))
    BodyD.potential_energy = -m * g * r * cos(q2)

    Lag = Lagrangian(N, BodyD)
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()

    # Linearize about steady-state upright rolling
    op_point = {
        q1: 0,
        q2: 0,
        q3: 0,
        q1d: 0,
        q2d: 0,
        q1d.diff(): 0,
        q2d.diff(): 0,
        q3d.diff(): 0,
    }
    A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0]
    sol = Matrix(
        [
            [0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 1, 0],
            [0, 0, 0, 0, 0, 1],
            [0, 0, 0, 0, -6 * q3d, 0],
            [0, -4 * g / (5 * r), 0, 6 * q3d / 5, 0, 0],
            [0, 0, 0, 0, 0, 0],
        ]
    )

    assert A == sol
Пример #33
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and 3
    # speed variables are need to describe this system, along with the
    # disc's mass and radius, and the local gravity.
    q1, q2, q3 = dynamicsymbols('q1 q2 q3')
    q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # Forming the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))

    # Finally we form the equations of motion, using the same steps we did
    # before. Supply the Lagrangian, the generalized speeds.
    BodyD.set_potential_energy(-m * g * r * cos(q2))
    Lag = Lagrangian(N, BodyD)
    q = [q1, q2, q3]
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()
    RHS = l.rhs()
    RHS.simplify()
    assert (l.mass_matrix[3:6] == [0, 5 * m * r**2 / 4, 0])
    assert (RHS[4] == (-4 * g * sin(q2) + 5 * r * sin(q2) * cos(q2) * q1d**2 +
                       6 * r * cos(q2) * q1d * q3d) / (5 * r))
    assert RHS[5] == (5 * sin(q2)**2 * q1d + 6 * sin(q2) * q3d -
                      q1d) * q2d / cos(q2)
Пример #34
0
def test_dub_pen():

    # The system considered is the double pendulum. Like in the
    # test of the simple pendulum above, we begin by creating the generalized
    # coordinates and the simple generalized speeds and accelerations which
    # will be used later. Following this we create frames and points necessary
    # for the kinematics. The procedure isn't explicitly explained as this is
    # similar to the simple  pendulum. Also this is documented on the pydy.org
    # website.
    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    q1dd, q2dd = dynamicsymbols('q1 q2', 2)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, q1d * A.z)
    B.set_ang_vel(N, q2d * A.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    ParP.potential_energy = - m * g * l * cos(q1)
    ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2)
    L = Lagrangian(N, ParP, ParR)
    lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
    lm.form_lagranges_equations()

    assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd
        + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2
        + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0
    assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd
        - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2
        + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0
    assert lm.bodies == [ParP, ParR]
Пример #35
0
def test_disc_on_an_incline_plane():
    # Disc rolling on an inclined plane
    # First the generalized coordinates are created. The mass center of the
    # disc is located from top vertex of the inclined plane by the generalized
    # coordinate 'y'. The orientation of the disc is defined by the angle
    # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of
    # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the
    # gravitational constant.
    y, theta = dynamicsymbols('y theta')
    yd, thetad = dynamicsymbols('y theta', 1)
    m, g, R, l, alpha = symbols('m g R l alpha')

    # Next, we create the inertial reference frame 'N'. A reference frame 'A'
    # is attached to the inclined plane. Finally a frame is created which is attached to the disk.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z])
    B = A.orientnew('B', 'Axis', [-theta, A.z])

    # Creating the disc 'D'; we create the point that represents the mass
    # center of the disc and set its velocity. The inertia dyadic of the disc
    # is created. Finally, we create the disc.
    Do = Point('Do')
    Do.set_vel(N, yd * A.x)
    I = m * R**2 / 2 * B.z | B.z
    D = RigidBody('D', Do, B, m, (I, Do))

    # To construct the Lagrangian, 'L', of the disc, we determine its kinetic
    # and potential energies, T and U, respectively. L is defined as the
    # difference between T and U.
    D.set_potential_energy(m * g * (l - y) * sin(alpha))
    L = Lagrangian(N, D)

    # We then create the list of generalized coordinates and constraint
    # equations. The constraint arises due to the disc rolling without slip on
    # on the inclined path. Also, the constraint is holonomic but we supply the
    # differentiated holonomic equation as the 'LagrangesMethod' class requires
    # that. We then invoke the 'LagrangesMethod' class and supply it the
    # necessary arguments and generate the equations of motion. The'rhs' method
    # solves for the q_double_dots (i.e. the second derivative with respect to
    # time  of the generalized coordinates and the lagrange multiplers.
    q = [y, theta]
    coneq = [yd - R * thetad]
    m = LagrangesMethod(L, q, coneq)
    m.form_lagranges_equations()
    rhs = m.rhs()
    rhs.simplify()
    assert rhs[2] == 2*g*sin(alpha)/3
Пример #36
0
def test_point_a1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.a1pt_theory(O, N, B) == -(qd**2) * B.x + qdd * B.y
    P.set_vel(B, q2d * B.z)
    assert P.a1pt_theory(O, N, B) == -(qd**2) * B.x + qdd * B.y + q2dd * B.z
    O.set_vel(N, q2d * B.x)
    assert P.a1pt_theory(O, N, B) == ((q2dd - qd**2) * B.x +
                                      (q2d * qd + qdd) * B.y + q2dd * B.z)
Пример #37
0
def test_kinetic_energy():
    m, M, l1 = symbols('m M l1')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    assert 0 == kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
            + 2*l1**2*m*omega**2 + omega**2/2)
Пример #38
0
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        2, 1)

    assert (KM.linearize(A_and_B=True,
                         new_method=True)[0] == Matrix([[0, 1],
                                                        [-k / m, -c / m]]))

    # Ensure that the old linearizer still works and that the new linearizer
    # gives the same results. The old linearizer is deprecated and should be
    # removed in >= 1.0.
    M_old = KM.mass_matrix_full
    # The old linearizer raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        F_A_old, F_B_old, r_old = KM.linearize()
    M_new, F_A_new, F_B_new, r_new = KM.linearize(new_method=True)
    assert simplify(M_new.inv() * F_A_new - M_old.inv() * F_A_old) == zeros(2)
Пример #39
0
def test_point_a1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.a1pt_theory(O, N, B) ==  -(qd**2) * B.x + qdd * B.y
    P.set_vel(B, q2d * B.z)
    assert P.a1pt_theory(O, N, B) == -(qd**2) * B.x + qdd * B.y + q2dd * B.z
    O.set_vel(N, q2d * B.x)
    assert P.a1pt_theory(O, N, B) == ((q2dd - qd**2) * B.x + (q2d * qd + qdd) * B.y +
                               q2dd * B.z)
Пример #40
0
def test_angular_momentum_and_linear_momentum():
    m, M, l1 = symbols('m M l1')
    q1d = dynamicsymbols('q1d')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, q1d * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    assert linear_momentum(N, A, Pa) == 2 * m * q1d* l1 * N.y + M * l1 * q1d * N.y
    assert angular_momentum(O, N, A, Pa) == 4 * m * q1d * l1**2 * N.z + q1d * N.z
def test_disc_on_an_incline_plane():
    # Disc rolling on an inclined plane
    # First the generalized coordinates are created. The mass center of the
    # disc is located from top vertex of the inclined plane by the generalized
    # coordinate 'y'. The orientation of the disc is defined by the angle
    # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of
    # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the
    # gravitational constant.
    y, theta = dynamicsymbols('y theta')
    yd, thetad = dynamicsymbols('y theta', 1)
    m, g, R, l, alpha = symbols('m g R l alpha')

    # Next, we create the inertial reference frame 'N'. A reference frame 'A'
    # is attached to the inclined plane. Finally a frame is created which is attached to the disk.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [pi / 2 - alpha, N.z])
    B = A.orientnew('B', 'Axis', [-theta, A.z])

    # Creating the disc 'D'; we create the point that represents the mass
    # center of the disc and set its velocity. The inertia dyadic of the disc
    # is created. Finally, we create the disc.
    Do = Point('Do')
    Do.set_vel(N, yd * A.x)
    I = m * R**2 / 2 * B.z | B.z
    D = RigidBody('D', Do, B, m, (I, Do))

    # To construct the Lagrangian, 'L', of the disc, we determine its kinetic
    # and potential energies, T and U, respectively. L is defined as the
    # difference between T and U.
    D.potential_energy = m * g * (l - y) * sin(alpha)
    L = Lagrangian(N, D)

    # We then create the list of generalized coordinates and constraint
    # equations. The constraint arises due to the disc rolling without slip on
    # on the inclined path. We then invoke the 'LagrangesMethod' class and
    # supply it the necessary arguments and generate the equations of motion.
    # The'rhs' method solves for the q_double_dots (i.e. the second derivative
    # with respect to time  of the generalized coordinates and the lagrange
    # multipliers.
    q = [y, theta]
    hol_coneqs = [y - R * theta]
    m = LagrangesMethod(L, q, hol_coneqs=hol_coneqs)
    m.form_lagranges_equations()
    rhs = m.rhs()
    rhs.simplify()
    assert rhs[2] == 2 * g * sin(alpha) / 3
Пример #42
0
def test_kinetic_energy():
    m, M, l1 = symbols('m M l1')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    assert 0 == kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
            + 2*l1**2*m*omega**2 + omega**2/2)
Пример #43
0
def test_Lagrangian():
    M, m, g, h = symbols("M m g h")
    N = ReferenceFrame("N")
    O = Point("O")
    O.set_vel(N, 0 * N.x)
    P = O.locatenew("P", 1 * N.x)
    P.set_vel(N, 10 * N.x)
    Pa = Particle("Pa", P, 1)
    Ac = O.locatenew("Ac", 2 * N.y)
    Ac.set_vel(N, 5 * N.y)
    a = ReferenceFrame("a")
    a.set_ang_vel(N, 10 * N.z)
    I = outer(N.z, N.z)
    A = RigidBody("A", Ac, a, 20, (I, Ac))
    Pa.potential_energy = m * g * h
    A.potential_energy = M * g * h
    raises(TypeError, lambda: Lagrangian(A, A, Pa))
    raises(TypeError, lambda: Lagrangian(N, N, Pa))
Пример #44
0
def test_Lagrangian():
    M, m, g, h = symbols('M m g h')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    P = O.locatenew('P', 1 * N.x)
    P.set_vel(N, 10 * N.x)
    Pa = Particle('Pa', P, 1)
    Ac = O.locatenew('Ac', 2 * N.y)
    Ac.set_vel(N, 5 * N.y)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, 10 * N.z)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, 20, (I, Ac))
    Pa.potential_energy = m * g * h
    A.potential_energy = M * g * h
    raises(TypeError, lambda: Lagrangian(A, A, Pa))
    raises(TypeError, lambda: Lagrangian(N, N, Pa))
Пример #45
0
def test_potential_energy():
    m, M, l1, g, h, H = symbols("m M l1 g h H")
    omega = dynamicsymbols("omega")
    N = ReferenceFrame("N")
    O = Point("O")
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew("Ac", l1 * N.x)
    P = Ac.locatenew("P", l1 * N.x)
    a = ReferenceFrame("a")
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle("Pa", P, m)
    I = outer(N.z, N.z)
    A = RigidBody("A", Ac, a, M, (I, Ac))
    Pa.potential_energy = m * g * h
    A.potential_energy = M * g * H
    assert potential_energy(A, Pa) == m * g * h + M * g * H
Пример #46
0
def test_rigidbody2():
    M, v, r, omega, g, h = dynamicsymbols('M v r omega g h')
    N = ReferenceFrame('N')
    b = ReferenceFrame('b')
    b.set_ang_vel(N, omega * b.x)
    P = Point('P')
    I = outer(b.x, b.x)
    Inertia_tuple = (I, P)
    B = RigidBody('B', P, b, M, Inertia_tuple)
    P.set_vel(N, v * b.x)
    assert B.angular_momentum(P, N) == omega * b.x
    O = Point('O')
    O.set_vel(N, v * b.x)
    P.set_pos(O, r * b.y)
    assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z
    B.potential_energy = M * g * h
    assert B.potential_energy == M * g * h
    assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2
Пример #47
0
def test_potential_energy():
    m, M, l1, g, h, H = symbols('m M l1 g h H')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    Pa.set_potential_energy(m * g * h)
    A.set_potential_energy(M * g * H)
    assert potential_energy(A, Pa) == m * g * h + M * g * H
Пример #48
0
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols("q1 q2 u1 u2")
    q1d, q2d, u1d, u2d = dynamicsymbols("q1 q2 u1 u2", 1)
    m, c1, c2, k1, k2 = symbols("m c1 c2 k1 k2")
    N = ReferenceFrame("N")
    P1 = Point("P1")
    P2 = Point("P2")
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [
        (P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x),
        (P2, (-k2 * q2 - c2 * u2) * N.x),
    ]
    pa1 = Particle("pa1", P1, m)
    pa2 = Particle("pa2", P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warns_deprecated_sympy():
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(
        (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) / m)
    assert expand(rhs[1]) == expand(
        (k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        4, 1)
Пример #49
0
def test_rigidbody3():
    q1, q2, q3, q4 = dynamicsymbols('q1:5')
    p1, p2, p3 = symbols('p1:4')
    m = symbols('m')

    A = ReferenceFrame('A')
    B = A.orientnew('B', 'axis', [q1, A.x])
    O = Point('O')
    O.set_vel(A, q2 * A.x + q3 * A.y + q4 * A.z)
    P = O.locatenew('P', p1 * B.x + p2 * B.y + p3 * B.z)
    I = outer(B.x, B.x)

    rb1 = RigidBody('rb1', P, B, m, (I, P))
    # I_S/O = I_S/S* + I_S*/O
    rb2 = RigidBody('rb2', P, B, m,
                    (I + inertia_of_point_mass(m, P.pos_from(O), B), O))

    assert rb1.central_inertia == rb2.central_inertia
    assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)
Пример #50
0
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
        q2 - c2 * u2) * N.x)]
    pa1 = Particle('pa1', P1, m)
    pa2 = Particle('pa2', P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    KM.kanes_equations(BL, FL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)

    # Make sure an error is raised if nonlinear kinematic differential
    # equations are supplied.
    kd = [q1d - u1**2, sin(q2d) - cos(u2)]
    raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2],
                                           u_ind=[u1, u2], kd_eqs=kd))
Пример #51
0
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x),
          (P2, (-k2 * q2 - c2 * u2) * N.x)]
    pa1 = Particle()
    pa2 = Particle()
    pa1.mass = m
    pa2.mass = m
    pa1.point = P1
    pa2.point = P2
    BL = [pa1, pa2]

    # Finally we create the Kane object, specify the inertial frame, pass
    # relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = Kane(N)
    KM.coords([q1, q2])
    KM.speeds([u1, u2])
    KM.kindiffeq(kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(
        (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) / m)
    assert expand(rhs[1]) == expand(
        (k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)
Пример #52
0
def test_kinetic_energy():
    m, M, l1 = symbols("m M l1")
    omega = dynamicsymbols("omega")
    N = ReferenceFrame("N")
    O = Point("O")
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew("Ac", l1 * N.x)
    P = Ac.locatenew("P", l1 * N.x)
    a = ReferenceFrame("a")
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle("Pa", P, m)
    I = outer(N.z, N.z)
    A = RigidBody("A", Ac, a, M, (I, Ac))
    raises(TypeError, lambda: kinetic_energy(Pa, Pa, A))
    raises(TypeError, lambda: kinetic_energy(N, N, A))
    assert (0 == (kinetic_energy(N, Pa, A) -
                  (M * l1**2 * omega**2 / 2 + 2 * l1**2 * m * omega**2 +
                   omega**2 / 2)).expand())
Пример #53
0
def test_rigidbody3():
    q1, q2, q3, q4 = dynamicsymbols("q1:5")
    p1, p2, p3 = symbols("p1:4")
    m = symbols("m")

    A = ReferenceFrame("A")
    B = A.orientnew("B", "axis", [q1, A.x])
    O = Point("O")
    O.set_vel(A, q2 * A.x + q3 * A.y + q4 * A.z)
    P = O.locatenew("P", p1 * B.x + p2 * B.y + p3 * B.z)
    P.v2pt_theory(O, A, B)
    I = outer(B.x, B.x)

    rb1 = RigidBody("rb1", P, B, m, (I, P))
    # I_S/O = I_S/S* + I_S*/O
    rb2 = RigidBody("rb2", P, B, m,
                    (I + inertia_of_point_mass(m, P.pos_from(O), B), O))

    assert rb1.central_inertia == rb2.central_inertia
    assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)
Пример #54
0
def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
Пример #55
0
def test_point_funcs():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    assert P.pos_from(O) == q * B.x
    P.set_vel(B, qd * B.x + q2d * B.y)
    assert P.vel(B) == qd * B.x + q2d * B.y
    O.set_vel(N, 0)
    assert O.vel(N) == 0
    assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y +
                                      (-10 * qd) * B.z)

    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * B.x)
    O.set_vel(N, 5 * N.x)
    assert O.vel(N) == 5 * N.x
    assert P.a2pt_theory(O, N, B) == (-10 * qd**2) * B.x + (10 * qdd) * B.y

    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    P.set_vel(B, qd * B.x + q2d * B.y)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
Пример #56
-1
def test_nonminimal_pendulum():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c,
            forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Check solution
    lam1 = LM.lam_vec[0, 0]
    eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1],
                      [m*Derivative(q2, t, t) + 2*lam1*q2]])
    assert LM.eom == eom_sol
    # Check multiplier solution
    lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)])
    assert LM.solve_multipliers(sol_type='Matrix') == lam_sol
Пример #57
-1
def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert A == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])
Пример #58
-1
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
    assert (KM.linearize(A_and_B=True, new_method=True)[0] ==
            Matrix([[0, 1], [-k/m, -c/m]]))

    # Ensure that the old linearizer still works and that the new linearizer
    # gives the same results. The old linearizer is deprecated and should be
    # removed in >= 0.7.7.
    M_old = KM.mass_matrix_full
    # The old linearizer raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        F_A_old, F_B_old, r_old = KM.linearize()
    M_new, F_A_new, F_B_new, r_new = KM.linearize(new_method=True)
    assert simplify(M_new.inv() * F_A_new - M_old.inv() * F_A_old) == zeros(2)
Пример #59
-1
def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols("q1 q2 q3 u1 u2 u3")
    u4, u5 = dynamicsymbols("u4, u5")
    r = symbols("r")

    N = ReferenceFrame("N")
    Y = N.orientnew("Y", "Axis", [q1, N.z])
    L = Y.orientnew("L", "Axis", [q2, Y.x])
    R = L.orientnew("R", "Axis", [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point("C")
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew("Dmc", r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert partial_velocity(vel_list, u_list) == [
        [-r * L.y, 0, L.x],
        [r * L.x, 0, L.y],
        [0, 0, L.z],
        [L.x, L.x, 0],
        [cos(q2) * L.y - sin(q2) * L.z, cos(q2) * L.y - sin(q2) * L.z, 0],
    ]