def OPDM(L, R, flavor): display( Markdown( rf""" Computing OPDM for {flavor} (skipping summation for dummy variables)""" )) i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) PermutList = [PermutationOperator(i, j), PermutationOperator(a, b)] oo = Fd(i) * F(j) cc = BCH.level(oo, "SD") g_oo = evaluate_deltas(wicks(L * cc * R, keep_only_fully_contracted=True)) g_oo = simplify_index_permutations(g_oo, PermutList) index_rule = {'below': 'klmno', 'above': 'abcde'} g_oo = substitute_dummies(g_oo, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_{ij}') final_eq = Eq(gamma, g_oo) display(final_eq) ov = Fd(i) * F(a) cc = BCH.level(ov, "SD") g_ov = evaluate_deltas(wicks(L * cc * R, keep_only_fully_contracted=True)) g_ov = simplify_index_permutations(g_ov, PermutList) index_rule = {'below': 'jklmn', 'above': 'bcdef'} g_ov = substitute_dummies(g_ov, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_{ia}') final_eq = Eq(gamma, g_ov) display(final_eq) vo = Fd(a) * F(i) cc = BCH.level(vo, "SD") g_vo = evaluate_deltas(wicks(L * cc * R, keep_only_fully_contracted=True)) g_vo = simplify_index_permutations(g_vo, PermutList) index_rule = {'below': 'jklmn', 'above': 'bcdef'} g_vo = substitute_dummies(g_vo, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_{ai}') final_eq = Eq(gamma, g_vo) display(final_eq) vv = Fd(a) * F(b) cc = BCH.level(vv, "SD") g_vv = evaluate_deltas(wicks(L * cc * R, keep_only_fully_contracted=True)) g_vv = simplify_index_permutations(g_vv, PermutList) index_rule = {'below': 'ijklm', 'above': 'cdefg'} g_vv = substitute_dummies(g_vv, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_{ab}') final_eq = Eq(gamma, g_vv) display(final_eq)
def main(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) H1, H2 = getHamiltonian() eq_H1 = computeHausdorff(H1) #e^(-T)H1e^T eq_H2 = computeHausdorff(H2) print("CC energy:") Energy = wicks(eq_H1 + eq_H2, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) Energy = substitute_dummies(Energy, new_indices=True, pretty_indices=pretty_dummies_dict) print(latex(Energy)) print() """ print("CC dE_H1/(dLia):") eqH1T1 = wicks(Fd(i)*F(a)*eq_H1, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) P = PermutationOperator eqH1T1 = simplify_index_permutations(eqH1T1, [P(a, b), P(i, j)]) eqH1T1 = substitute_dummies(eqH1T1,new_indices=True, pretty_indices=pretty_dummies_dict) print(latex(eqH1T1)) print() print("CC dE_H2/(dLia):") eqH2T1 = wicks(Fd(i)*F(a)*eq_H2, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) P = PermutationOperator eqH2T1 = simplify_index_permutations(eqH2T1, [P(a, b), P(i, j)]) eqH2T1 = substitute_dummies(eqH2T1,new_indices=True, pretty_indices=pretty_dummies_dict) print(latex(eqH2T1)) print() """ print("CC dE_H1/(dLijab):") eqH1T2 = wicks(Fd(j) * F(b) * Fd(i) * F(a) * eq_H1, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) P = PermutationOperator eqH1T2 = simplify_index_permutations(eqH1T2, [P(a, b), P(i, j)]) eqH1T2 = substitute_dummies(eqH1T2, new_indices=True, pretty_indices=pretty_dummies_dict) print(latex(eqH1T2)) print() print("CC dE_H2/(dLijab):") eqH2T2 = wicks(Fd(j) * F(b) * Fd(i) * F(a) * eq_H2, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) P = PermutationOperator eqH2T2 = simplify_index_permutations(eqH2T2, [P(i, j), P(a, b)]) eqH2T2 = substitute_dummies(eqH2T2, new_indices=True, pretty_indices=pretty_dummies_dict) print(latex(eqH2T2)) print()
def get_doubles_cluster_operator(): i, j = symbols("i, j", below_fermi=True, cls=Dummy) a, b = symbols("a, b", above_fermi=True, cls=Dummy) t = AntiSymmetricTensor("t", (a, b), (i, j)) t = t * Fd(a) * F(i) * Fd(b) * F(j) return [Rational(1, 4) * t]
def OPTDM(Lf1, Rf1, Lf2, Rf2, flavor1, flavor2): display( Markdown( rf""" Computing Dyson OPTDM between {flavor1} $\rightarrow$ {flavor2} (skipping summation for dummy variables)""" )) i = symbols('i', below_fermi=True) a = symbols('a', above_fermi=True) index_rule = {'below': 'jklmn', 'above': 'bcde'} oo = Fd(i) cc = BCH.level(oo, "SD") g_oo = evaluate_deltas( wicks(Lf2 * cc * Rf1, keep_only_fully_contracted=True)) g_oo = substitute_dummies(g_oo, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_i^{R}') final_eq = Eq(gamma, g_oo) display(final_eq) ov = Fd(a) cc = BCH.level(ov, "SD") g_ov = evaluate_deltas( wicks(Lf2 * cc * Rf1, keep_only_fully_contracted=True)) index_rule = {'below': 'jklmn', 'above': 'bcdef'} g_ov = substitute_dummies(g_ov, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_a^{R}') final_eq = Eq(gamma, g_ov) display(final_eq) vo = F(i) cc = BCH.level(vo, "SD") g_vo = evaluate_deltas( wicks(Lf1 * cc * Rf2, keep_only_fully_contracted=True)) index_rule = {'below': 'jklmn', 'above': 'bcdef'} g_vo = substitute_dummies(g_vo, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_i^{L}') final_eq = Eq(gamma, g_vo) display(final_eq) vv = F(a) cc = BCH.level(vv, "SD") g_vv = evaluate_deltas( wicks(Lf1 * cc * Rf2, keep_only_fully_contracted=True)) index_rule = {'below': 'ijklm', 'above': 'cdefg'} g_vv = substitute_dummies(g_vv, new_indices=True, pretty_indices=index_rule) gamma = Symbol('\gamma_a^{L}') final_eq = Eq(gamma, g_vv) display(final_eq)
def getHamiltonian(): p, q, r, s = symbols('p,q,r,s', cls=Dummy) h = AntiSymmetricTensor('h', (p, ), (q, )) pq = Fd(p) * F(q) u = AntiSymmetricTensor('u', (p, r), (q, s)) pqsr = Fd(p) * Fd(r) * F(s) * F(q) H1 = h * pq H2 = Rational(1, 4) * u * pqsr return (H1, H2)
def get_two_body_equation(equation_h, equation_u): two_body_eq = wicks( Fd(j) * F(b) * Fd(i) * F(a) * equation_u, **wicks_kwargs) p = PermutationOperator two_body_eq = simplify_index_permutations(two_body_eq, [p(i, j), p(a, b)]) two_body_eq = substitute_dummies(two_body_eq, **sub_kwargs) return two_body_eq
def get_one_body_equation(equation_h, equation_u): one_body_eq = wicks( Fd(j) * F(b) * Fd(i) * F(a) * equation_h, **wicks_kwargs) p = PermutationOperator one_body_eq = simplify_index_permutations(one_body_eq, [p(a, b), p(i, j)]) one_body_eq = substitute_dummies(one_body_eq, **sub_kwargs) return one_body_eq
def get_hamiltonian(): p, q, r, s = symbols("p, q, r, s", cls=Dummy) h = AntiSymmetricTensor("h", (p, ), (q, )) u = AntiSymmetricTensor("u", (p, r), (q, s)) h = h * Fd(p) * F(q) u = u * Fd(p) * Fd(r) * F(s) * F(q) return h, Rational(1, 4) * u
def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c * BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c * BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2 * NO(Fd(m) * F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2 * NO(Fd(m) * F(m)) C = Commutator X, Y, Z = symbols('X,Y,Z', commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') D = KroneckerDelta assert C(Fd(a), F(i)) == -2 * NO(F(i) * Fd(a)) assert C(Fd(j), NO(Fd(a) * F(i))).doit(wicks=True) == -D(j, i) * Fd(a) assert C(Fd(a) * F(i), Fd(b) * F(j)).doit(wicks=True) == 0
def main(): base = sys.argv[0] filename = os.path.splitext(base)[0] fo = open(filename + '.tex', "w") fo.write("\documentclass{article}\n") fo.write("\usepackage[fleqn]{amsmath}\n") fo.write("\usepackage{latexsym, amsfonts}\n") fo.write("\usepackage{pdflscape}\n") fo.write(r'\parindent=0pt\relax') fo.write("\n") fo.write(r'\begin{document}') fo.write("\n") fo.write(r'\begin{landscape}') fo.write("\n") # Hamiltonian p, q, r, s = symbols('p,q,r,s', cls=Dummy) f = AntiSymmetricTensor('f', (p, ), (q, )) pr = Fd(p) * F(q) v = AntiSymmetricTensor('v', (p, q), (r, s)) pqsr = Fd(p) * Fd(q) * F(s) * F(r) H = f * pr + Rational(1, 4) * v * pqsr # Print Hamiltonian fo.write("The spin orbital hamiltonian:\n") Equation2Tex(latex(H), fo) # Exciation and de-excitation operators i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) ia = Fd(a) * F(i) jb = Fd(j) * F(b) C = Commutator #First com comm1 = C(H, ia) comm2 = C(jb, comm1) fo.write("Evaluating operators:\n") Equation2Tex(latex(comm2), fo) comm2 = comm2.doit() comm2 = comm2.expand() #comm2= Permute_Str(comm2) comm2 = Permute_Op(comm2) Equation2Tex(latex(comm2), fo) #finish writing fo.write("\end{landscape}\n") fo.write("\end{document}\n") fo.close() os.system("pdflatex " + filename + '.tex')
def test_limit_subs(): for F in (Sum, Product, Integral): assert F(a * exp(a), (a, -2, 2)) == F(a * exp(a), (a, -b, b)).subs(b, 2) assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \ F(a, (a, c, 4)) assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1))
def get_CC_operators(): """ Returns a tuple (T1,T2) of unique operators. """ i = symbols('i', below_fermi=True, cls=Dummy) a = symbols('a', above_fermi=True, cls=Dummy) t_ai = AntiSymmetricTensor('t', (a,), (i,)) ai = NO(Fd(a)*F(i)) i, j = symbols('i,j', below_fermi=True, cls=Dummy) a, b = symbols('a,b', above_fermi=True, cls=Dummy) t_abij = AntiSymmetricTensor('t', (a, b), (i, j)) abji = NO(Fd(a)*Fd(b)*F(j)*F(i)) T1 = t_ai*ai T2 = Rational(1, 4)*t_abij*abji return (T1, T2)
def get_ccsd_t_operators(ast_symb="t"): i = symbols("i", below_fermi=True, cls=Dummy) a = symbols("a", above_fermi=True, cls=Dummy) t_ai = AntiSymmetricTensor(ast_symb, (a, ), (i, )) c_ai = NO(Fd(a) * F(i)) i, j = symbols("i, j", below_fermi=True, cls=Dummy) a, b = symbols("a, b", above_fermi=True, cls=Dummy) t_abij = AntiSymmetricTensor(ast_symb, (a, b), (i, j)) c_abij = NO(Fd(a) * Fd(b) * F(j) * F(i)) T_1 = t_ai * c_ai T_2 = Rational(1, 4) * t_abij * c_abij return (T_1, T_2)
def get_ccsd_lambda_operators(ast_symb="l"): i = symbols("i", below_fermi=True, cls=Dummy) a = symbols("a", above_fermi=True, cls=Dummy) l_ia = AntiSymmetricTensor(ast_symb, (i, ), (a, )) c_ia = NO(Fd(i) * F(a)) i, j = symbols("i, j", below_fermi=True, cls=Dummy) a, b = symbols("a, b", above_fermi=True, cls=Dummy) l_ijab = AntiSymmetricTensor(ast_symb, (i, j), (a, b)) c_ijab = NO(Fd(i) * Fd(j) * F(b) * F(a)) L_1 = l_ia * c_ia L_2 = Rational(1, 4) * l_ijab * c_ijab return (L_1, L_2)
def test_is_commutative(): from sympy.physics.secondquant import NO, F, Fd m = Symbol('m', commutative=False) for f in (Sum, Product, Integral): assert f(z, (z, 1, 1)).is_commutative is True assert f(z * y, (z, 1, 6)).is_commutative is True assert f(m * x, (x, 1, 2)).is_commutative is False assert f(NO(Fd(x) * F(y)) * z, (z, 1, 2)).is_commutative is False
def test_contraction(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi
def test_contraction(): i, j, k, l = symbols("i,j,k,l", below_fermi=True) a, b, c, d = symbols("a,b,c,d", above_fermi=True) p, q, r, s = symbols("p,q,r,s") assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b)))
def L1(expr): j1,j2,j3 = symbols('j1,j2,j3' ,below_fermi=True, cls=Dummy) b1,b2,b3 = symbols('b1,b2,b3' ,above_fermi=True, cls=Dummy) if expr == "IP": L1 = Fraction(1, 1)*AntiSymmetricTensor('l',(j1,),())*Fd(j1) return L1 elif expr == "DIP": L1 = Fraction(1, 2)*AntiSymmetricTensor('l',(j1,j2),())*Fd(j1)*Fd(j2) return L1 elif expr == "EA": L1 = Fraction(1, 1)*AntiSymmetricTensor('l',(),(b1,))*F(b1) return L1 elif expr == "DEA": L1 = Fraction(1, 2)*AntiSymmetricTensor('l',(),(b1,b2))*F(b2)*F(b1) return L1 elif expr == "EE": L1 = Fraction(1, 1)*AntiSymmetricTensor('l',(j1,),(b1,))*Fd(j1)*F(b1) return L1 elif expr == "CCSD": L1 = Fraction(1, 1)*AntiSymmetricTensor('l',(j1,),(b1,))*Fd(j1)*F(b1) return L1
def R1(expr): i1,i2,i3 = symbols('i1,i2,i3' ,below_fermi=True, cls=Dummy) a1,a2,a3 = symbols('a1,a2,i3' ,above_fermi=True, cls=Dummy) if expr == "IP": R1 = Fraction(1, 1)*AntiSymmetricTensor('r',(),(i1,))*(F(i1)) return R1 elif expr == "DIP": R1 = Fraction(1, 2)*AntiSymmetricTensor('r',(),(i1,i2))*F(i2)*F(i1) return R1 elif expr == "EA": R1 = Fraction(1, 1)*AntiSymmetricTensor('r',(a1,),())*Fd(a1) return R1 elif expr == "DEA": R1 = Fraction(1, 2)*AntiSymmetricTensor('r',(a1,a2),())*NO(Fd(a1)*Fd(a2)) return R1 elif expr == "EE": R1 = Fraction(1, 1)*AntiSymmetricTensor('r',(a1,),(i1,))*Fd(a1)*F(i1) return R1 elif expr == "CCSD": R1 = 0 return R1
def R2(expr): i1,i2,i3,i4,i5 = symbols('i1,i2,i3,i4,i5' ,below_fermi=True, cls=Dummy) a1,a2,a3,a4,a5 = symbols('a1,a2,a3,a4,a5' ,above_fermi=True, cls=Dummy) if expr == "IP": R2 = Fraction(1, 2)*AntiSymmetricTensor('r',(a1,),(i2,i3))*Fd(a1)*F(i3)*F(i2) return R2 elif expr == "DIP": R2 = Fraction(1, 6)*AntiSymmetricTensor('r',(a1,),(i3,i4,i5))*Fd(a1)*F(i5)*F(i4)*F(i3) return R2 elif expr == "EA": R2 = Fraction(1, 2)*AntiSymmetricTensor('r',(a2,a3),(i1,))*Fd(a2)*Fd(a3)*F(i1) return R2 elif expr == "DEA": R2 = Fraction(1, 6)*AntiSymmetricTensor('r',(a3,a4,a5),(i1,))*NO(Fd(a3)*Fd(a4)*Fd(a5)*F(i1)) return R2 elif expr == "EE": R2 = Fraction(1, 4)*AntiSymmetricTensor('r',(a2,a3),(i2,i3))*Fd(a2)*Fd(a3)*F(i3)*F(i2) return R2 elif expr == "CCSD": R2 = 0 return R2
def test_annihilate_f(): i, j, n, m = symbols('i,j,n,m') o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4)
def test_fully_contracted(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) Fock = (AntiSymmetricTensor('f', (p, ), (q, )) * NO(Fd(p) * F(q))) V = (AntiSymmetricTensor('v', (p, q), (r, s)) * NO(Fd(p) * Fd(q) * F(s) * F(r))) / 4 Fai = wicks(NO(Fd(i) * F(a)) * Fock, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Fai == AntiSymmetricTensor('f', (a, ), (i, )) Vabij = wicks(NO(Fd(i) * Fd(j) * F(b) * F(a)) * V, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j))
def test_get_subNO(): p, q, r = symbols("p,q,r") assert NO(F(p) * F(q) * F(r)).get_subNO(1) == NO(F(p) * F(r)) assert NO(F(p) * F(q) * F(r)).get_subNO(0) == NO(F(q) * F(r)) assert NO(F(p) * F(q) * F(r)).get_subNO(2) == NO(F(p) * F(q))
def test_substitute_dummies_SQ_operator(): i, j = symbols("i j", cls=Dummy) assert substitute_dummies(att(i, j) * Fd(i) * F(j) - att(j, i) * Fd(j) * F(i)) == 0
def test_sorting(): i, j = symbols("i,j", below_fermi=True) a, b = symbols("a,b", above_fermi=True) p, q = symbols("p,q") # p, q assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) # i, p assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) # a, p assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) # i, a assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0)
def test_NO(): i, j, k, l = symbols("i j k l", below_fermi=True) a, b, c, d = symbols("a b c d", above_fermi=True) p, q, r, s = symbols("p q r s", cls=Dummy) assert NO(Fd(p) * F(q) + Fd(a) * F(b)) == NO(Fd(p) * F(q)) + NO(Fd(a) * F(b)) assert NO(Fd(i) * NO(F(j) * Fd(a))) == NO(Fd(i) * F(j) * Fd(a)) assert NO(1) == 1 assert NO(i) == i assert NO(Fd(a) * Fd(b) * (F(c) + F(d))) == NO(Fd(a) * Fd(b) * F(c)) + NO( Fd(a) * Fd(b) * F(d) ) assert NO(Fd(a) * F(b))._remove_brackets() == Fd(a) * F(b) assert NO(F(j) * Fd(i))._remove_brackets() == F(j) * Fd(i) assert NO(Fd(p) * F(q)).subs(Fd(p), Fd(a) + Fd(i)) == NO(Fd(a) * F(q)) + NO( Fd(i) * F(q) ) assert NO(Fd(p) * F(q)).subs(F(q), F(a) + F(i)) == NO(Fd(p) * F(a)) + NO( Fd(p) * F(i) ) expr = NO(Fd(p) * F(q))._remove_brackets() assert wicks(expr) == NO(expr) assert NO(Fd(a) * F(b)) == -NO(F(b) * Fd(a)) no = NO(Fd(a) * F(i) * F(b) * Fd(j)) l1 = [ind for ind in no.iter_q_creators()] assert l1 == [0, 1] l2 = [ind for ind in no.iter_q_annihilators()] assert l2 == [3, 2] no = NO(Fd(a) * Fd(i)) assert no.has_q_creators == 1 assert no.has_q_annihilators == -1 assert str(no) == ":CreateFermion(a)*CreateFermion(i):" assert repr(no) == "NO(CreateFermion(a)*CreateFermion(i))" assert latex(no) == r"\left\{a^\dagger_{a} a^\dagger_{i}\right\}" raises(NotImplementedError, lambda: NO(Bd(p) * F(q)))
def test_wicks(): p, q, r, s = symbols("p,q,r,s", above_fermi=True) # Testing for particles only str = F(p) * Fd(q) assert wicks(str) == NO(F(p) * Fd(q)) + KroneckerDelta(p, q) str = Fd(p) * F(q) assert wicks(str) == NO(Fd(p) * F(q)) str = F(p) * Fd(q) * F(r) * Fd(s) nstr = wicks(str) fasit = NO( KroneckerDelta(p, q) * KroneckerDelta(r, s) + KroneckerDelta(p, q) * AnnihilateFermion(r) * CreateFermion(s) + KroneckerDelta(r, s) * AnnihilateFermion(p) * CreateFermion(q) - KroneckerDelta(p, s) * AnnihilateFermion(r) * CreateFermion(q) - AnnihilateFermion(p) * AnnihilateFermion(r) * CreateFermion(q) * CreateFermion(s) ) assert nstr == fasit assert (p * q * nstr).expand() == wicks(p * q * str) assert (nstr * p * q * 2).expand() == wicks(str * p * q * 2) # Testing CC equations particles and holes i, j, k, l = symbols("i j k l", below_fermi=True, cls=Dummy) a, b, c, d = symbols("a b c d", above_fermi=True, cls=Dummy) p, q, r, s = symbols("p q r s", cls=Dummy) assert wicks(F(a) * NO(F(i) * F(j)) * Fd(b)) == NO( F(a) * F(i) * F(j) * Fd(b) ) + KroneckerDelta(a, b) * NO(F(i) * F(j)) assert wicks(F(a) * NO(F(i) * F(j) * F(k)) * Fd(b)) == NO( F(a) * F(i) * F(j) * F(k) * Fd(b) ) - KroneckerDelta(a, b) * NO(F(i) * F(j) * F(k)) expr = wicks(Fd(i) * NO(Fd(j) * F(k)) * F(l)) assert expr == -KroneckerDelta(i, k) * NO(Fd(j) * F(l)) - KroneckerDelta(j, l) * NO( Fd(i) * F(k) ) - KroneckerDelta(i, k) * KroneckerDelta(j, l) + KroneckerDelta(i, l) * NO( Fd(j) * F(k) ) + NO( Fd(i) * Fd(j) * F(k) * F(l) ) expr = wicks(F(a) * NO(F(b) * Fd(c)) * Fd(d)) assert expr == -KroneckerDelta(a, c) * NO(F(b) * Fd(d)) - KroneckerDelta(b, d) * NO( F(a) * Fd(c) ) - KroneckerDelta(a, c) * KroneckerDelta(b, d) + KroneckerDelta(a, d) * NO( F(b) * Fd(c) ) + NO( F(a) * F(b) * Fd(c) * Fd(d) )
def test_annihilate_f(): i, j, n, m = symbols("i,j,n,m") o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols("i,j,k,l", below_fermi=True) a, b, c, d = symbols("a,b,c,d", above_fermi=True) p, q, r, s = symbols("p,q,r,s") assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) assert str(F(p)) == "f(p)" assert repr(F(p)) == "AnnihilateFermion(p)" assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" assert latex(F(p)) == "a_{p}"
def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), B(0)) assert c == 0 c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c * BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c * BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2 * NO(Fd(m) * F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2 * NO(Fd(m) * F(m)) C = Commutator X, Y, Z = symbols("X,Y,Z", commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols("i,j,k,l", below_fermi=True) a, b, c, d = symbols("a,b,c,d", above_fermi=True) p, q, r, s = symbols("p,q,r,s") D = KroneckerDelta assert C(Fd(a), F(i)) == -2 * NO(F(i) * Fd(a)) assert C(Fd(j), NO(Fd(a) * F(i))).doit(wicks=True) == -D(j, i) * Fd(a) assert C(Fd(a) * F(i), Fd(b) * F(j)).doit(wicks=True) == 0 c1 = Commutator(F(a), Fd(a)) assert Commutator.eval(c1, c1) == 0 c = Commutator(Fd(a) * F(i), Fd(b) * F(j)) assert latex(c) == r"\left[a^\dagger_{a} a_{i},a^\dagger_{b} a_{j}\right]" assert ( repr(c) == "Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))" ) assert ( str(c) == "[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]" )
def test_equality(): # if this fails remove special handling below raises(ValueError, lambda: Sum(x, x)) r = symbols('x', real=True) for F in (Sum, Product, Integral): try: assert F(x, x) != F(y, y) assert F(x, (x, 1, 2)) != F(x, x) assert F(x, (x, x)) != F(x, x) # or else they print the same assert F(1, x) != F(1, y) except ValueError: pass assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) assert F(1, (x, 1, x)) != F(1, (y, 1, x)) assert F(1, (x, 1, x)) != F(1, (y, 1, y)) # issue 5265 assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a))