def dup_sqf_list(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.sqfreetools import dup_sqf_list >>> f = ZZ.map([2, 16, 50, 76, 56, 16]) >>> dup_sqf_list(f, ZZ) (2, [([1, 1], 2), ([1, 2], 3)]) >>> dup_sqf_list(f, ZZ, all=True) (2, [([1], 1), ([1, 1], 2), ([1, 2], 3)]) """ if not K.has_CharacteristicZero: return dup_gf_sqf_list(f, K, all=all) if K.has_Field or not K.is_Exact: coeff = dup_LC(f, K) f = dup_monic(f, K) else: coeff, f = dup_primitive(f, K) if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) coeff = -coeff if dup_degree(f) <= 0: return coeff, [] result, i = [], 1 h = dup_diff(f, 1, K) g, p, q = dup_inner_gcd(f, h, K) while True: d = dup_diff(p, 1, K) h = dup_sub(q, d, K) if not h: result.append((p, i)) break g, p, q = dup_inner_gcd(p, h, K) if all or dup_degree(g) > 0: result.append((g, i)) i += 1 return coeff, result
def dup_sqf_list(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> R.dup_sqf_list(f) (2, [(x + 1, 2), (x + 2, 3)]) >>> R.dup_sqf_list(f, all=True) (2, [(1, 1), (x + 1, 2), (x + 2, 3)]) """ if K.is_FiniteField: return dup_gf_sqf_list(f, K, all=all) if K.has_Field: coeff = dup_LC(f, K) f = dup_monic(f, K) else: coeff, f = dup_primitive(f, K) if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) coeff = -coeff if dup_degree(f) <= 0: return coeff, [] result, i = [], 1 h = dup_diff(f, 1, K) g, p, q = dup_inner_gcd(f, h, K) while True: d = dup_diff(p, 1, K) h = dup_sub(q, d, K) if not h: result.append((p, i)) break g, p, q = dup_inner_gcd(p, h, K) if all or dup_degree(g) > 0: result.append((g, i)) i += 1 return coeff, result
def dup_sqf_list(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> R.dup_sqf_list(f) (2, [(x + 1, 2), (x + 2, 3)]) >>> R.dup_sqf_list(f, all=True) (2, [(1, 1), (x + 1, 2), (x + 2, 3)]) """ if K.is_FiniteField: return dup_gf_sqf_list(f, K, all=all) if K.is_Field: coeff = dup_LC(f, K) f = dup_monic(f, K) else: coeff, f = dup_primitive(f, K) if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) coeff = -coeff if dup_degree(f) <= 0: return coeff, [] result, i = [], 1 h = dup_diff(f, 1, K) g, p, q = dup_inner_gcd(f, h, K) while True: d = dup_diff(p, 1, K) h = dup_sub(q, d, K) if not h: result.append((p, i)) break g, p, q = dup_inner_gcd(p, h, K) if all or dup_degree(g) > 0: result.append((g, i)) i += 1 return coeff, result
def dup_ext_factor(f, K): """Factor univariate polynomials over algebraic number fields. """ n, lc = dup_degree(f), dup_LC(f, K) f = dup_monic(f, K) if n <= 0: return lc, [] if n == 1: return lc, [(f, 1)] f, F = dup_sqf_part(f, K), f s, g, r = dup_sqf_norm(f, K) factors = dup_factor_list_include(r, K.dom) if len(factors) == 1: return lc, [(f, n // dup_degree(f))] H = s * K.unit for i, (factor, _) in enumerate(factors): h = dup_convert(factor, K.dom, K) h, _, g = dup_inner_gcd(h, g, K) h = dup_shift(h, H, K) factors[i] = h factors = dup_trial_division(F, factors, K) return lc, factors
def dup_ext_factor(f, K): """Factor univariate polynomials over algebraic number fields. """ n, lc = dup_degree(f), dup_LC(f, K) f = dup_monic(f, K) if n <= 0: return lc, [] if n == 1: return lc, [(f, 1)] f, F = dup_sqf_part(f, K), f s, g, r = dup_sqf_norm(f, K) factors = dup_factor_list_include(r, K.dom) if len(factors) == 1: return lc, [(f, n//dup_degree(f))] H = s*K.unit for i, (factor, _) in enumerate(factors): h = dup_convert(factor, K.dom, K) h, _, g = dup_inner_gcd(h, g, K) h = dup_shift(h, H, K) factors[i] = h factors = dup_trial_division(F, factors, K) return lc, factors