def generate_montgomery_curve_from_weierstrass(wa, wb, wx, wy, p): from sympy.polys.domains import ZZ import sympy from sympy.polys.galoistools import gf_factor f = [1, 0, wa, wb] sympy.Poly.from_list(f, sympy.Symbol('x')) factor = gf_factor(f, p, ZZ) x = None for r in factor: # f*****g sympy if isinstance(r, list): for root in r: if len(root) == 2 \ and len(root[0]) == 2 \ and gmpy2.jacobi(3 * ((p - root[0][-1]) ** 2) + wa, p) == 1: x = p - root[0][-1] break assert x is not None s = sqrt1(gmpy2.invert(3 * x**2 + wa, p), p) mb = s ma = (3 * x * s) % p mx = (s * (wx - x)) % p my = (s * wy) % p return (ma, p - ma), (mb, p - mb), (mx, p - mx), (my, p - my)
def check(self, f, min_p=2, max_p=30): # checking through few small primes to see if it is perhaps # either irreducible in one of those, or the degrees of irreducible factors # are imcompatible from sympy.polys.galoistools import gf_factor from sympy.polys.domains import ZZ from sympy import primerange irreduc_factors_degrees = {} irreduc_primes = [] for p in primerange(min_p, max_p + 1): try: irreduc_factors = gf_factor(f.all_coeffs(), p, ZZ) degrees = [] for x in irreduc_factors[1]: pol = x[0] e = x[1] degrees += e * [(len(pol) - 1)] if len(degrees) == 1: # irreducible by p... irreduc_primes.append(p) # store irreducibility factors degrees for later irreduc_factors_degrees[p] = degrees except sympy.polys.polyerrors.NotInvertible: pass res = {} if irreduc_primes: res["p"] = irreduc_primes # check if the degrees are compatible, first for degrees in Fp[x], we calculate by summing # all possible degrees of irreducible factors in Z[x] sums = {} trivial = set(range(1, f.degree() + 1)) for p in irreduc_factors_degrees: sums_p = subsets_sums(irreduc_factors_degrees[p]) if sums_p != trivial: sums[p] = sums_p if not sums: return UNKNOWN, None # then if intersection of these is empty or {deg(f)}, then lesser degree factor is impossible # thus polynomial will have to be irreducible inter = set.intersection(*list(sums.values())) if f.degree() in inter: inter.remove(f.degree()) if not inter: # intersection is empty, imcompatible factors! res["degrees"] = sums if res: return IRREDUCIBLE, res return UNKNOWN, None
def dup_gf_factor(f, K): """Factor univariate polynomials over finite fields. """ f = dup_convert(f, K, K.dom) coeff, factors = gf_factor(f, K.mod, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dup_convert(f, K.dom, K), k) return K.convert(coeff, K.dom), factors
def test_gf_factor(): assert gf_factor([], 11, ZZ) == (0, []) assert gf_factor([1], 11, ZZ) == (1, []) assert gf_factor([1,1], 11, ZZ) == (1, [([1, 1], 1)]) assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]]) config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1,1], 11, ZZ) == (1, [[1, 1]]) f, p = [1,0,0,1,0], 2 g = (1, [([1, 0], 1), ([1, 1], 1), ([1, 1, 1], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g g = (1, [[1, 0], [1, 1], [1, 1, 1]]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(f, p, ZZ) == g f, p = gf_from_int_poly([1,-3,1,-3,-1,-3,1], 11), 11 g = (1, [([1, 1], 1), ([1, 5, 3], 1), ([1, 2, 3, 4], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = [1, 5, 8, 4], 11 g = (1, [([1, 1], 1), ([1, 2], 2)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = [1, 1, 10, 1, 0, 10, 10, 10, 0, 0], 11 g = (1, [([1, 0], 2), ([1, 9, 5], 1), ([1, 3, 0, 8, 5, 2], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = gf_from_dict({32: 1, 0: 1}, 11, ZZ), 11 g = (1, [([1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = gf_from_dict({32: 8, 0: 5}, 11, ZZ), 11 g = (8, [([1, 3], 1), ([1, 8], 1), ([1, 0, 9], 1), ([1, 2, 2], 1), ([1, 9, 2], 1), ([1, 0, 5, 0, 7], 1), ([1, 0, 6, 0, 7], 1), ([1, 0, 0, 0, 1, 0, 0, 0, 6], 1), ([1, 0, 0, 0, 10, 0, 0, 0, 6], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = gf_from_dict({63: 8, 0: 5}, 11, ZZ), 11 g = (8, [([1, 7], 1), ([1, 4, 5], 1), ([1, 6, 8, 2], 1), ([1, 9, 9, 2], 1), ([1, 0, 0, 9, 0, 0, 4], 1), ([1, 2, 0, 8, 4, 6, 4], 1), ([1, 2, 3, 8, 0, 6, 4], 1), ([1, 2, 6, 0, 8, 4, 4], 1), ([1, 3, 3, 1, 6, 8, 4], 1), ([1, 5, 6, 0, 8, 6, 4], 1), ([1, 6, 2, 7, 9, 8, 4], 1), ([1, 10, 4, 7, 10, 7, 4], 1), ([1, 10, 10, 1, 4, 9, 4], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g # Gathen polynomials: x**n + x + 1 (mod p > 2**n * pi) p = ZZ(nextprime(int((2**15 * pi).evalf()))) f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ) assert gf_sqf_p(f, p, ZZ) == True g = (1, [([1, 22730, 68144], 1), ([1, 81553, 77449, 86810, 4724], 1), ([1, 86276, 56779, 14859, 31575], 1), ([1, 15347, 95022, 84569, 94508, 92335], 1)]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g g = (1, [[1, 22730, 68144], [1, 81553, 77449, 86810, 4724], [1, 86276, 56779, 14859, 31575], [1, 15347, 95022, 84569, 94508, 92335]]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(f, p, ZZ) == g # Shoup polynomials: f = a_0 x**n + a_1 x**(n-1) + ... + a_n # (mod p > 2**(n-2) * pi), where a_n = a_{n-1}**2 + 1, a_0 = 1 p = ZZ(nextprime(int((2**4 * pi).evalf()))) f = [1, 2, 5, 26, 41, 39, 38] assert gf_sqf_p(f, p, ZZ) == True g = (1, [([1, 44, 26], 1), ([1, 11, 25, 18, 30], 1)]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g g = (1, [[1, 44, 26], [1, 11, 25, 18, 30]]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'other') raises(KeyError, lambda: gf_factor([1,1], 11, ZZ)) config.setup('GF_FACTOR_METHOD')