Пример #1
0
def hyperplane_parameters(poly, vertices=None):
    """A helper function to return the hyperplane parameters
    of which the facets of the polytope are a part of.

    Parameters
    ==========

    poly :
        The input 2/3-Polytope.
    vertices :
        Vertex indices of 3-Polytope.

    Examples
    ========

    >>> from sympy.geometry.point import Point
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.integrals.intpoly import hyperplane_parameters
    >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
    [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
    >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
                (5, 0, 5), (5, 5, 0), (5, 5, 5)],\
                [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
                [3, 1, 0, 2], [0, 4, 6, 2]]
    >>> hyperplane_parameters(cube[1:], cube[0])
    [([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5),
    ([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)]
    """
    if isinstance(poly, Polygon):
        vertices = list(poly.vertices) + [poly.vertices[0]
                                          ]  # Close the polygon
        params = [None] * (len(vertices) - 1)

        for i in range(len(vertices) - 1):
            v1 = vertices[i]
            v2 = vertices[i + 1]

            a1 = v1[1] - v2[1]
            a2 = v2[0] - v1[0]
            b = v2[0] * v1[1] - v2[1] * v1[0]

            factor = gcd_list([a1, a2, b])

            b = S(b) / factor
            a = (S(a1) / factor, S(a2) / factor)
            params[i] = (a, b)
    else:
        params = [None] * len(poly)
        for i, polygon in enumerate(poly):
            v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
            normal = cross_product(v1, v2, v3)
            b = sum([normal[j] * v1[j] for j in range(0, 3)])
            fac = gcd_list(normal)
            if fac.is_zero:
                fac = 1
            normal = [j / fac for j in normal]
            b = b / fac
            params[i] = (normal, b)
    return params
Пример #2
0
def hyperplane_parameters(poly, vertices=None):
    """A helper function to return the hyperplane parameters
    of which the facets of the polytope are a part of.

    Parameters
    ==========
    poly : The input 2/3-Polytope
    vertices :  Vertex indices of 3-Polytope

    Examples
    ========

    >>> from sympy.geometry.point import Point
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.integrals.intpoly import hyperplane_parameters
    >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
    [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
    >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
                (5, 0, 5), (5, 5, 0), (5, 5, 5)],\
                [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
                [3, 1, 0, 2], [0, 4, 6, 2]]
    >>> hyperplane_parameters(cube[1:], cube[0])
    [([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5),
    ([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)]
    """
    if isinstance(poly, Polygon):
        vertices = list(poly.vertices) + [poly.vertices[0]]  # Close the polygon
        params = [None] * (len(vertices) - 1)

        for i in range(len(vertices) - 1):
            v1 = vertices[i]
            v2 = vertices[i + 1]

            a1 = v1[1] - v2[1]
            a2 = v2[0] - v1[0]
            b = v2[0] * v1[1] - v2[1] * v1[0]

            factor = gcd_list([a1, a2, b])

            b = S(b) / factor
            a = (S(a1) / factor, S(a2) / factor)
            params[i] = (a, b)
    else:
        params = [None] * len(poly)
        for i, polygon in enumerate(poly):
            v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
            normal = cross_product(v1, v2, v3)
            b = sum([normal[j] * v1[j] for j in range(0, 3)])
            fac = gcd_list(normal)
            if fac is S.Zero:
                fac = 1
            normal = [j / fac for j in normal]
            b = b / fac
            params[i] = (normal, b)
    return params
Пример #3
0
def hyperplane_parameters(poly, vertices=None):
    """A helper function to return the hyperplane parameters
    of which the facets of the polygon are a part of.
    Currently works for only 2-Polytopes.
    Parameters
    ==========
    poly : The input Polygon

    Optional Parameters
    ----------------------
    vertices :  Vertex indices of faces of 3-Polytope
    Examples
    ========
    >>> from sympy.geometry.point import Point
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.integrals.intpoly import hyperplane_parameters
    >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
    [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
    """
    if isinstance(poly, Polygon):
        vertices = list(poly.vertices) + [poly.vertices[0]
                                          ]  # Close the polygon
        params = [None] * (len(vertices) - 1)

        for i in range(len(vertices) - 1):
            v1 = vertices[i]
            v2 = vertices[i + 1]

            a1 = v1[1] - v2[1]
            a2 = v2[0] - v1[0]
            b = v2[0] * v1[1] - v2[1] * v1[0]

            factor = gcd_list([a1, a2, b])

            b = S(b) / factor
            a = (S(a1) / factor, S(a2) / factor)
            params[i] = (a, b)
    else:
        params = [None] * len(poly)
        for i, polygon in enumerate(poly):
            v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
            normal = cross_product(v1, v2, v3)
            b = sum([normal[j] * v1[j] for j in range(0, 3)])
            fac = gcd_list(normal)
            if fac is S.Zero:
                fac = 1
            normal = [j / fac for j in normal]
            b = b / fac
            params[i] = (normal, b)
    return params
Пример #4
0
def hyperplane_parameters(poly, vertices=None):
    """A helper function to return the hyperplane parameters
    of which the facets of the polygon are a part of.
    Currently works for only 2-Polytopes.
    Parameters
    ==========
    poly : The input Polygon

    Optional Parameters
    ----------------------
    vertices :  Vertex indices of faces of 3-Polytope
    Examples
    ========
    >>> from sympy.geometry.point import Point
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.integrals.intpoly import hyperplane_parameters
    >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
    [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
    """
    if isinstance(poly, Polygon):
        vertices = list(poly.vertices) + [poly.vertices[0]]  # Close the polygon
        params = [None] * (len(vertices) - 1)

        for i in range(len(vertices) - 1):
            v1 = vertices[i]
            v2 = vertices[i + 1]

            a1 = v1[1] - v2[1]
            a2 = v2[0] - v1[0]
            b = v2[0] * v1[1] - v2[1] * v1[0]

            factor = gcd_list([a1, a2, b])

            b = S(b) / factor
            a = (S(a1) / factor, S(a2) / factor)
            params[i] = (a, b)
    else:
        params = [None] * len(poly)
        for i, polygon in enumerate(poly):
            v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
            normal = cross_product(v1, v2, v3)
            b = sum([normal[j] * v1[j] for j in range(0, 3)])
            fac = gcd_list(normal)
            if fac is S.Zero:
                fac = 1
            normal = [j / fac for j in normal]
            b = b / fac
            params[i] = (normal, b)
    return params
Пример #5
0
def _integer_basis(poly):
    """Compute coefficient basis for a polynomial over integers. """
    monoms, coeffs = zip(*poly.terms())

    monoms, = zip(*monoms)
    coeffs = map(abs, coeffs)

    if coeffs[0] < coeffs[-1]:
        coeffs = list(reversed(coeffs))
    else:
        return None

    monoms = monoms[:-1]
    coeffs = coeffs[:-1]

    divs = reversed(divisors(gcd_list(coeffs))[1:])

    try:
        div = divs.next()
    except StopIteration:
        return None

    while True:
        for monom, coeff in zip(monoms, coeffs):
            if coeff % div**monom != 0:
                try:
                    div = divs.next()
                except StopIteration:
                    return None
                else:
                    break
        else:
            return div
Пример #6
0
def _integer_basis(poly):
    """Compute coefficient basis for a polynomial over integers. """
    monoms, coeffs = zip(*poly.terms())

    monoms, = zip(*monoms)
    coeffs = map(abs, coeffs)

    if coeffs[0] < coeffs[-1]:
        coeffs = list(reversed(coeffs))
    else:
        return None

    monoms = monoms[:-1]
    coeffs = coeffs[:-1]

    divs = reversed(divisors(gcd_list(coeffs))[1:])

    try:
        div = divs.next()
    except StopIteration:
        return None

    while True:
        for monom, coeff in zip(monoms, coeffs):
            if coeff % div**monom != 0:
                try:
                    div = divs.next()
                except StopIteration:
                    return None
                else:
                    break
        else:
            return div
Пример #7
0
def hyperplane_parameters(poly):
    """A helper function to return the hyperplane parameters
    of which the facets of the polygon are a part of.
    Currently works for only 2-Polytopes.
    Parameters
    ==========
    poly : The input Polygon

    Examples
    ========
    >>> from sympy.geometry.point import Point
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.integrals.intpoly import hyperplane_parameters
    >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
    [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
    """
    vertices = list(poly.vertices) + [poly.vertices[0]]  # Close the polygon.
    params = [None] * (len(vertices) - 1)
    for i in range(len(vertices) - 1):
        v1 = vertices[i]
        v2 = vertices[i + 1]

        a1 = v1[1] - v2[1]
        a2 = v2[0] - v1[0]
        b = v2[0] * v1[1] - v2[1] * v1[0]

        factor = gcd_list([a1, a2, b])

        b = S(b)/factor
        a = (S(a1)/factor, S(a2)/factor)
        params[i] = (a, b)

    return params
Пример #8
0
def hyperplane_parameters(poly):
    """A helper function to return the hyperplane parameters
    of which the facets of the polygon are a part of.
    Currently works for only 2-Polytopes.
    Parameters
    ==========
    poly : The input Polygon

    Examples
    ========
    >>> from sympy.geometry.point import Point
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.integrals.intpoly import hyperplane_parameters
    >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
    [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
    """
    vertices = list(poly.vertices) + [poly.vertices[0]]  # Close the polygon.
    params = [None] * (len(vertices) - 1)
    for i in range(len(vertices) - 1):
        v1 = vertices[i]
        v2 = vertices[i + 1]

        a1 = v1[1] - v2[1]
        a2 = v2[0] - v1[0]
        b = v2[0] * v1[1] - v2[1] * v1[0]

        factor = gcd_list([a1, a2, b])

        b = S(b) / factor
        a = (S(a1) / factor, S(a2) / factor)
        params[i] = (a, b)

    return params
Пример #9
0
def _integer_basis(poly):
    """Compute coefficient basis for a polynomial over integers.

    Returns the integer ``div`` such that substituting ``x = div*y``
    ``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
    than those of ``p``.

    For example ``x**5 + 512*x + 1024 = 0``
    with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``

    Returns the integer ``div`` or ``None`` if there is no possible scaling.

    Examples
    ========

    >>> from sympy.polys import Poly
    >>> from sympy.abc import x
    >>> from sympy.polys.polyroots import _integer_basis
    >>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
    >>> _integer_basis(p)
    4
    """
    monoms, coeffs = list(zip(*poly.terms()))

    monoms, = list(zip(*monoms))
    coeffs = list(map(abs, coeffs))

    if coeffs[0] < coeffs[-1]:
        coeffs = list(reversed(coeffs))
        n = monoms[0]
        monoms = [n - i for i in reversed(monoms)]
    else:
        return None

    monoms = monoms[:-1]
    coeffs = coeffs[:-1]

    divs = reversed(divisors(gcd_list(coeffs))[1:])

    try:
        div = next(divs)
    except StopIteration:
        return None

    while True:
        for monom, coeff in zip(monoms, coeffs):
            if coeff % div**monom != 0:
                try:
                    div = next(divs)
                except StopIteration:
                    return None
                else:
                    break
        else:
            return div