Пример #1
0
    def __new__(cls, f, x, index=None, radicals=False, expand=True):
        """ Construct an indexed complex root of a polynomial.

        See ``rootof`` for the parameters.

        The default value of ``radicals`` is ``False`` to satisfy
        ``eval(srepr(expr) == expr``.
        """
        x = sympify(x)

        if index is None and x.is_Integer:
            x, index = None, x
        else:
            index = sympify(index)

        if index is not None and index.is_Integer:
            index = int(index)
        else:
            raise ValueError("expected an integer root index, got %s" % index)

        poly = PurePoly(f, x, greedy=False, expand=expand)

        if not poly.is_univariate:
            raise PolynomialError("only univariate polynomials are allowed")

        if not poly.gen.is_Symbol:
            # PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of
            # x for each are not the same: issue 8617
            raise PolynomialError("generator must be a Symbol")

        degree = poly.degree()

        if degree <= 0:
            raise PolynomialError("can't construct CRootOf object for %s" % f)

        if index < -degree or index >= degree:
            raise IndexError("root index out of [%d, %d] range, got %d" %
                             (-degree, degree - 1, index))
        elif index < 0:
            index += degree

        dom = poly.get_domain()

        if not dom.is_Exact:
            poly = poly.to_exact()

        roots = cls._roots_trivial(poly, radicals)

        if roots is not None:
            return roots[index]

        coeff, poly = preprocess_roots(poly)
        dom = poly.get_domain()

        if not dom.is_ZZ:
            raise NotImplementedError("CRootOf is not supported over %s" % dom)

        root = cls._indexed_root(poly, index)
        return coeff * cls._postprocess_root(root, radicals)
Пример #2
0
    def __new__(cls, f, x, index=None, radicals=True, expand=True):
        """Construct a new ``RootOf`` object for ``k``-th root of ``f``. """
        x = sympify(x)

        if index is None and x.is_Integer:
            x, index = None, x
        else:
            index = sympify(index)

        if index.is_Integer:
            index = int(index)
        else:
            raise ValueError("expected an integer root index, got %d" % index)

        poly = PurePoly(f, x, greedy=False, expand=expand)

        if not poly.is_univariate:
            raise PolynomialError("only univariate polynomials are allowed")

        degree = poly.degree()

        if degree <= 0:
            raise PolynomialError("can't construct RootOf object for %s" % f)

        if index < -degree or index >= degree:
            raise IndexError("root index out of [%d, %d] range, got %d" %
                             (-degree, degree - 1, index))
        elif index < 0:
            index += degree

        dom = poly.get_domain()

        if not dom.is_Exact:
            poly = poly.to_exact()

        roots = cls._roots_trivial(poly, radicals)

        if roots is not None:
            return roots[index]

        coeff, poly = preprocess_roots(poly)
        dom = poly.get_domain()

        if not dom.is_ZZ:
            raise NotImplementedError("RootOf is not supported over %s" % dom)

        root = cls._indexed_root(poly, index)
        return coeff*cls._postprocess_root(root, radicals)
Пример #3
0
def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    if n <= 0:
        raise ValueError(
            "can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    p, elts = 2, [[x, -sqrt(2)], [x, sqrt(2)]]

    for i in xrange(2, n + 1):
        p, _elts = nextprime(p), []

        neg_sqrt = -sqrt(p)
        pos_sqrt = +sqrt(p)

        for elt in elts:
            _elts.append(elt + [neg_sqrt])
            _elts.append(elt + [pos_sqrt])

        elts = _elts

    poly = []

    for elt in elts:
        poly.append(Add(*elt))

    if not args.get('polys', False):
        return Mul(*poly).expand()
    else:
        return PurePoly(Mul(*poly), x)
Пример #4
0
def legendre_poly(n, x=None, polys=False):
    """Generates Legendre polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError("Cannot generate Legendre polynomial of degree %s" %
                         n)

    poly = DMP(dup_legendre(int(n), QQ), QQ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #5
0
def chebyshevu_poly(n, x=None, polys=False):
    """Generates Chebyshev polynomial of the second kind of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError(
            "can't generate 2nd kind Chebyshev polynomial of degree %s" % n)

    poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #6
0
def laguerre_poly(n, x=None, alpha=None, polys=False):
    """Generates Laguerre polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    alpha
        Decides minimal domain for the list
        of coefficients.
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError("can't generate Laguerre polynomial of degree %s" % n)

    if alpha is not None:
        K, alpha = construct_domain(
            alpha, field=True)  # XXX: ground_field=True
    else:
        K, alpha = QQ, QQ(0)

    poly = DMP(dup_laguerre(int(n), alpha, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #7
0
def gegenbauer_poly(n, a, x=None, polys=False):
    """Generates Gegenbauer polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    a
        Decides minimal domain for the list of
        coefficients.
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError(
            "can't generate Gegenbauer polynomial of degree %s" % n)

    K, a = construct_domain(a, field=True)
    poly = DMP(dup_gegenbauer(int(n), a, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #8
0
def jacobi_poly(n, a, b, x=None, polys=False):
    """Generates Jacobi polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    a
        Lower limit of minimal domain for the list of
        coefficients.
    b
        Upper limit of minimal domain for the list of
        coefficients.
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError("can't generate Jacobi polynomial of degree %s" % n)

    K, v = construct_domain([a, b], field=True)
    poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #9
0
def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    from .numberfields import minimal_polynomial
    if n <= 0:
        raise ValueError(
            "can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        sympify(x)
    else:
        x = Dummy('x')

    if n > 3:
        p = 2
        a = [sqrt(2)]
        for i in range(2, n + 1):
            p = nextprime(p)
            a.append(sqrt(p))
        return minimal_polynomial(Add(*a), x, polys=args.get('polys', False))

    if n == 1:
        ex = x**2 - 2
    elif n == 2:
        ex = x**4 - 10 * x**2 + 1
    elif n == 3:
        ex = x**8 - 40 * x**6 + 352 * x**4 - 960 * x**2 + 576
    if not args.get('polys', False):
        return ex
    else:
        return PurePoly(ex, x)
Пример #10
0
def laguerre_poly(n, x=None, alpha=None, polys=False):
    """Generates Laguerre polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    alpha
        Decides minimal domain for the list
        of coefficients.
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError("can't generate Laguerre polynomial of degree %s" % n)

    if alpha is not None:
        K, alpha = construct_domain(
            alpha, field=True)  # XXX: ground_field=True
    else:
        K, alpha = QQ, QQ(0)

    poly = DMP(dup_laguerre(int(n), alpha, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #11
0
def chebyshevu_poly(n, x=None, polys=False):
    """Generates Chebyshev polynomial of the second kind of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError(
            "can't generate 2nd kind Chebyshev polynomial of degree %s" % n)

    poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #12
0
def gegenbauer_poly(n, a, x=None, polys=False):
    """Generates Gegenbauer polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    a
        Decides minimal domain for the list of
        coefficients.
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError(
            "can't generate Gegenbauer polynomial of degree %s" % n)

    K, a = construct_domain(a, field=True)
    poly = DMP(dup_gegenbauer(int(n), a, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #13
0
def jacobi_poly(n, a, b, x=None, polys=False):
    """Generates Jacobi polynomial of degree `n` in `x`.

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    a
        Lower limit of minimal domain for the list of
        coefficients.
    b
        Upper limit of minimal domain for the list of
        coefficients.
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError("can't generate Jacobi polynomial of degree %s" % n)

    K, v = construct_domain([a, b], field=True)
    poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #14
0
 def as_poly(self, x=None):
     """Create a Poly instance from ``self``. """
     if x is not None:
         return Poly.new(self.rep, x)
     else:
         if self.alias is not None:
             return Poly.new(self.rep, self.alias)
         else:
             return PurePoly.new(self.rep, Dummy('x'))
Пример #15
0
def test_pickling_polys_polytools():
    from sympy.polys.polytools import Poly, PurePoly, GroebnerBasis
    x = Symbol('x')

    for c in (Poly, Poly(x, x)):
        check(c)

    for c in (PurePoly, PurePoly(x)):
        check(c)
Пример #16
0
 def as_poly(self, x=None):
     """Create a Poly instance from ``self``. """
     if x is not None:
         return Poly.new(self.rep, x)
     else:
         if self.alias is not None:
             return Poly.new(self.rep, self.alias)
         else:
             return PurePoly.new(self.rep, Dummy('x'))
Пример #17
0
def spherical_bessel_fn(n, x=None, polys=False):
    """
    Coefficients for the spherical Bessel functions.

    Those are only needed in the jn() function.

    The coefficients are calculated from:

    fn(0, z) = 1/z
    fn(1, z) = 1/z**2
    fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.

    Examples
    ========

    >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
    >>> from sympy import Symbol
    >>> z = Symbol("z")
    >>> fn(1, z)
    z**(-2)
    >>> fn(2, z)
    -1/z + 3/z**3
    >>> fn(3, z)
    -6/z**2 + 15/z**4
    >>> fn(4, z)
    1/z - 45/z**3 + 105/z**5

    """

    if n < 0:
        dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
    else:
        dup = dup_spherical_bessel_fn(int(n), ZZ)

    poly = DMP(dup, ZZ)

    if x is not None:
        poly = Poly.new(poly, 1/x)
    else:
        poly = PurePoly.new(poly, 1/Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #18
0
def spherical_bessel_fn(n, x=None, polys=False):
    """
    Coefficients for the spherical Bessel functions.

    Those are only needed in the jn() function.

    The coefficients are calculated from:

    fn(0, z) = 1/z
    fn(1, z) = 1/z**2
    fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)

    Parameters
    ==========

    n : int
        `n` decides the degree of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.

    Examples
    ========

    >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
    >>> from sympy import Symbol
    >>> z = Symbol("z")
    >>> fn(1, z)
    z**(-2)
    >>> fn(2, z)
    -1/z + 3/z**3
    >>> fn(3, z)
    -6/z**2 + 15/z**4
    >>> fn(4, z)
    1/z - 45/z**3 + 105/z**5

    """

    if n < 0:
        dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
    else:
        dup = dup_spherical_bessel_fn(int(n), ZZ)

    poly = DMP(dup, ZZ)

    if x is not None:
        poly = Poly.new(poly, 1/x)
    else:
        poly = PurePoly.new(poly, 1/Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #19
0
    def __new__(cls, f, x, index=None, radicals=False, expand=True):
        """ Construct an indexed complex root of a polynomial.

        See ``rootof`` for the parameters.

        The default value of ``radicals`` is ``False`` to satisfy
        ``eval(srepr(expr) == expr``.
        """
        x = sympify(x)

        if index is None and x.is_Integer:
            x, index = None, x
        else:
            index = sympify(index)

        if index is not None and index.is_Integer:
            index = int(index)
        else:
            raise ValueError("expected an integer root index, got %s" % index)

        poly = PurePoly(f, x, greedy=False, expand=expand)

        if not poly.is_univariate:
            raise PolynomialError("only univariate polynomials are allowed")

        if not poly.gen.is_Symbol:
            # PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of
            # x for each are not the same: issue 8617
            raise PolynomialError("generator must be a Symbol")

        degree = poly.degree()

        if degree <= 0:
            raise PolynomialError("can't construct CRootOf object for %s" % f)

        if index < -degree or index >= degree:
            raise IndexError("root index out of [%d, %d] range, got %d" %
                             (-degree, degree - 1, index))
        elif index < 0:
            index += degree

        dom = poly.get_domain()

        if not dom.is_Exact:
            poly = poly.to_exact()

        roots = cls._roots_trivial(poly, radicals)

        if roots is not None:
            return roots[index]

        coeff, poly = preprocess_roots(poly)
        dom = poly.get_domain()

        if not dom.is_ZZ:
            raise NotImplementedError("CRootOf is not supported over %s" % dom)

        root = cls._indexed_root(poly, index)
        return coeff * cls._postprocess_root(root, radicals)
Пример #20
0
    def _new(cls, poly, index):
        """Construct new ``RootOf`` object from raw data. """
        obj = Expr.__new__(cls)

        obj.poly = PurePoly(poly)
        obj.index = index

        try:
            _reals_cache[obj.poly] = _reals_cache[poly]
            _complexes_cache[obj.poly] = _complexes_cache[poly]
        except KeyError:
            pass

        return obj
Пример #21
0
def cyclotomic_poly(n, x=None, **args):
    """Generates cyclotomic polynomial of order `n` in `x`. """
    if n <= 0:
        raise ValueError("can't generate cyclotomic polynomial of order %s" % n)

    poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #22
0
def chebyshevu_poly(n, x=None, **args):
    """Generates Chebyshev polynomial of the second kind of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate 2nd kind Chebyshev polynomial of degree %s" % n)

    poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #23
0
def legendre_poly(n, x=None, **args):
    """Generates Legendre polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Legendre polynomial of degree %s" % n)

    poly = DMP(dup_legendre(int(n), QQ), QQ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #24
0
def legendre_poly(n, x=None, **args):
    """Generates Legendre polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Legendre polynomial of degree %s" % n)

    poly = DMP(dup_legendre(int(n), QQ), QQ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #25
0
def chebyshevu_poly(n, x=None, **args):
    """Generates Chebyshev polynomial of the second kind of degree `n` in `x`. """
    if n < 0:
        raise ValueError(
            "can't generate 2nd kind Chebyshev polynomial of degree %s" % n)

    poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #26
0
def spherical_bessel_fn(n, x=None, **args):
    """
    Coefficients for the spherical Bessel functions.

    Those are only needed in the jn() function.

    The coefficients are calculated from:

    fn(0, z) = 1/z
    fn(1, z) = 1/z**2
    fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)

    Examples
    ========

    >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
    >>> from sympy import Symbol
    >>> z = Symbol("z")
    >>> fn(1, z)
    z**(-2)
    >>> fn(2, z)
    -1/z + 3/z**3
    >>> fn(3, z)
    -6/z**2 + 15/z**4
    >>> fn(4, z)
    1/z - 45/z**3 + 105/z**5

    """
    from sympy import sympify

    if n < 0:
        dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
    else:
        dup = dup_spherical_bessel_fn(int(n), ZZ)

    poly = DMP(dup, ZZ)

    if x is not None:
        poly = Poly.new(poly, 1 / x)
    else:
        poly = PurePoly.new(poly, 1 / Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #27
0
def jacobi_poly(n, a, b, x=None, **args):
    """Generates Jacobi polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Jacobi polynomial of degree %s" % n)

    K, v = construct_domain([a, b], field=True)
    poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #28
0
def gegenbauer_poly(n, a, x=None, **args):
    """Generates Gegenbauer polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Gegenbauer polynomial of degree %s" % n)

    K, a = construct_domain(a, field=True)
    poly = DMP(dup_gegenbauer(int(n), a, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #29
0
def spherical_bessel_fn(n, x=None, **args):
    """
    Coefficients for the spherical Bessel functions.

    Those are only needed in the jn() function.

    The coefficients are calculated from:

    fn(0, z) = 1/z
    fn(1, z) = 1/z**2
    fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)

    Examples
    ========

    >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
    >>> from sympy import Symbol
    >>> z = Symbol("z")
    >>> fn(1, z)
    z**(-2)
    >>> fn(2, z)
    -1/z + 3/z**3
    >>> fn(3, z)
    -6/z**2 + 15/z**4
    >>> fn(4, z)
    1/z - 45/z**3 + 105/z**5

    """
    from sympy import sympify

    if n < 0:
        dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
    else:
        dup = dup_spherical_bessel_fn(int(n), ZZ)

    poly = DMP(dup, ZZ)

    if x is not None:
        poly = Poly.new(poly, 1/x)
    else:
        poly = PurePoly.new(poly, 1/Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #30
0
def cyclotomic_poly(n, x=None, **args):
    """Generates cyclotomic polynomial of order `n` in `x`. """
    if n <= 0:
        raise ValueError("can't generate cyclotomic polynomial of order %s" %
                         n)

    poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #31
0
def jacobi_poly(n, a, b, x=None, **args):
    """Generates Jacobi polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Jacobi polynomial of degree %s" % n)

    K, v = construct_domain([a, b], field=True)
    poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #32
0
def gegenbauer_poly(n, a, x=None, **args):
    """Generates Gegenbauer polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Gegenbauer polynomial of degree %s" %
                         n)

    K, a = construct_domain(a, field=True)
    poly = DMP(dup_gegenbauer(int(n), a, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #33
0
def laguerre_poly(n, x=None, alpha=None, **args):
    """Generates Laguerre polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Laguerre polynomial of degree %s" % n)

    if alpha is not None:
        K, alpha = construct_domain(alpha, field=True) # XXX: ground_field=True
    else:
        K, alpha = QQ, QQ(0)

    poly = DMP(dup_laguerre(int(n), alpha, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #34
0
    def __new__(cls, f, x, index=None, radicals=True, expand=True):
        """Construct a new ``RootOf`` object for ``k``-th root of ``f``. """
        x = sympify(x)

        if index is None and x.is_Integer:
            x, index = None, x
        else:
            index = sympify(index)

        if index.is_Integer:
            index = int(index)
        else:
            raise ValueError("expected an integer root index, got %d" % index)

        poly = PurePoly(f, x, greedy=False, expand=expand)

        if not poly.is_univariate:
            raise PolynomialError("only univariate polynomials are allowed")

        degree = poly.degree()

        if degree <= 0:
            raise PolynomialError("can't construct RootOf object for %s" % f)

        if index < -degree or index >= degree:
            raise IndexError("root index out of [%d, %d] range, got %d" %
                             (-degree, degree - 1, index))
        elif index < 0:
            index += degree

        dom = poly.get_domain()

        if not dom.is_Exact:
            poly = poly.to_exact()

        roots = cls._roots_trivial(poly, radicals)

        if roots is not None:
            return roots[index]

        coeff, poly = preprocess_roots(poly)
        dom = poly.get_domain()

        if not dom.is_ZZ:
            raise NotImplementedError("RootOf is not supported over %s" % dom)

        root = cls._indexed_root(poly, index)
        return coeff * cls._postprocess_root(root, radicals)
Пример #35
0
def swinnerton_dyer_poly(n, x=None, polys=False):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.

    Parameters
    ----------
    n : int
        `n` decides the order of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n <= 0:
        raise ValueError(
            "Cannot generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        sympify(x)
    else:
        x = Dummy('x')

    if n > 3:
        from sympy.functions.elementary.miscellaneous import sqrt
        from .numberfields import minimal_polynomial
        p = 2
        a = [sqrt(2)]
        for i in range(2, n + 1):
            p = nextprime(p)
            a.append(sqrt(p))
        return minimal_polynomial(Add(*a), x, polys=polys)

    if n == 1:
        ex = x**2 - 2
    elif n == 2:
        ex = x**4 - 10 * x**2 + 1
    elif n == 3:
        ex = x**8 - 40 * x**6 + 352 * x**4 - 960 * x**2 + 576

    return PurePoly(ex, x) if polys else ex
Пример #36
0
def laguerre_poly(n, x=None, alpha=None, **args):
    """Generates Laguerre polynomial of degree `n` in `x`. """
    if n < 0:
        raise ValueError("can't generate Laguerre polynomial of degree %s" % n)

    if alpha is not None:
        K, alpha = construct_domain(alpha,
                                    field=True)  # XXX: ground_field=True
    else:
        K, alpha = QQ, QQ(0)

    poly = DMP(dup_laguerre(int(n), alpha, K), K)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly
Пример #37
0
def cyclotomic_poly(n, x=None, polys=False):
    """Generates cyclotomic polynomial of order `n` in `x`.

    Parameters
    ----------
    n : int
        `n` decides the order of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n <= 0:
        raise ValueError("can't generate cyclotomic polynomial of order %s" % n)

    poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy("x"))

    return poly if polys else poly.as_expr()
Пример #38
0
def legendre_poly(n, x=None, polys=False):
    """Generates Legendre polynomial of degree `n` in `x`.

    Parameters
    ----------
    n : int
        `n` decides the degree of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n < 0:
        raise ValueError("can't generate Legendre polynomial of degree %s" % n)

    poly = DMP(dup_legendre(int(n), QQ), QQ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #39
0
def cyclotomic_poly(n, x=None, polys=False):
    """Generates cyclotomic polynomial of order `n` in `x`.

    Parameters
    ----------
    n : int
        `n` decides the order of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    """
    if n <= 0:
        raise ValueError(
            "can't generate cyclotomic polynomial of order %s" % n)

    poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    return poly if polys else poly.as_expr()
Пример #40
0
def test_solve_poly_inequality():
    assert psolve(Poly(0, x), '==') == [S.Reals]
    assert psolve(Poly(1, x), '==') == [S.EmptySet]
    assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
Пример #41
0
 def _transform(cls, expr, x):
     """Transform an expression to a polynomial. """
     poly = PurePoly(expr, x, greedy=False)
     return preprocess_roots(poly)
Пример #42
0
 def __setitem__(self, k, v):
     if not isinstance(k, PurePoly):
         if not (isinstance(k, Expr) and len(k.free_symbols) == 1):
             raise ValueError('expecting univariate expression')
         k = PurePoly(k, expand=False)
     self._dict[k] = v
Пример #43
0
def test_sympy__polys__polytools__PurePoly():
    from sympy.polys.polytools import PurePoly
    assert _test_args(PurePoly(2, x, y))
Пример #44
0
def _pure_factors(poly):
    _, factors = poly.factor_list()
    return [(PurePoly(f, expand=False), m) for f, m in factors]
Пример #45
0
 def __getitem__(self, k):
     if not isinstance(k, PurePoly):
         if not (isinstance(k, Expr) and len(k.free_symbols) == 1):
             raise KeyError
         k = PurePoly(k, expand=False)
     return self._dict[k]