Пример #1
0
        return None

    # [(a, i), ...], where i*log(a) is a term in the log-part of the integral
    # of f
    respolys, residues = list(zip(*roots)) or [[], []]
    # Note: this might be empty, but everything below should work find in that
    # case (it should be the same as if it were [[1, 1]])
    residueterms = [(H[j][1].subs(z, i), i) for j in xrange(len(H))
                    for i in residues[j]]

    # TODO: finish writing this and write tests

    p = cancel(fa.as_expr() / fd.as_expr() -
               residue_reduce_derivation(H, DE, z))

    p = p.as_poly(DE.t)
    if p is None:
        # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical
        return None

    if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)):
        return None

    if case == 'auto':
        case = DE.case

    if case == 'exp':
        wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t, cancel=True)
            wa, wd = frac_in((wa, wd), DE.t)
Пример #2
0
def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None):
    """
    Parametric logarithmic derivative heuristic.

    Given a derivation D on k[t], f in k(t), and a hyperexponential monomial
    theta over k(t), raises either NotImplementedError, in which case the
    heuristic failed, or returns None, in which case it has proven that no
    solution exists, or returns a solution (n, m, v) of the equation
    n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0.

    If this heuristic fails, the structure theorem approach will need to be
    used.

    The argument w == Dtheta/theta
    """
    # TODO: finish writing this and write tests
    c1 = c1 or Dummy('c1')

    p, a = fa.div(fd)
    q, b = wa.div(wd)

    B = max(0, derivation(DE.t, DE).degree(DE.t) - 1)
    C = max(p.degree(DE.t), q.degree(DE.t))

    if q.degree(DE.t) > B:
        eqs = [p.nth(i) - c1 * q.nth(i) for i in range(B + 1, C + 1)]
        s = solve(eqs, c1)
        if not s or not s[c1].is_Rational:
            # deg(q) > B, no solution for c.
            return None

        N, M = s[c1].as_numer_denom()  # N and M are integers
        N, M = Poly(N, DE.t), Poly(M, DE.t)

        nfmwa = N * fa * wd - M * wa * fd
        nfmwd = fd * wd
        Qv = is_log_deriv_k_t_radical_in_field(N * fa * wd - M * wa * fd,
                                               fd * wd, DE, 'auto')
        if Qv is None:
            # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
            return None

        Q, e, v = Qv
        if e != 1:
            return None

        if Q.is_zero or v.is_zero:
            # Q == 0 or v == 0.
            return None

        return (Q * N, Q * M, v)

    if p.degree(DE.t) > B:
        return None

    c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC())
    l = fd.monic().lcm(wd.monic()) * Poly(c, DE.t)
    ln, ls = splitfactor(l, DE)
    z = ls * ln.gcd(ln.diff(DE.t))

    if not z.has(DE.t):
        raise NotImplementedError("parametric_log_deriv_heu() "
                                  "heuristic failed: z in k.")

    u1, r1 = (fa * l.quo(fd)).div(z)  # (l*f).div(z)
    u2, r2 = (wa * l.quo(wd)).div(z)  # (l*w).div(z)

    eqs = [r1.nth(i) - c1 * r2.nth(i) for i in range(z.degree(DE.t))]
    s = solve(eqs, c1)
    if not s or not s[c1].is_Rational:
        # deg(q) <= B, no solution for c.
        return None

    M, N = s[c1].as_numer_denom()

    nfmwa = N.as_poly(DE.t) * fa * wd - M.as_poly(DE.t) * wa * fd
    nfmwd = fd * wd
    Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE)
    if Qv is None:
        # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
        return None

    Q, v = Qv

    if Q.is_zero or v.is_zero:
        # Q == 0 or v == 0.
        return None

    return (Q * N, Q * M, v)
Пример #3
0
def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None):
    """
    Parametric logarithmic derivative heuristic.

    Given a derivation D on k[t], f in k(t), and a hyperexponential monomial
    theta over k(t), raises either NotImplementedError, in which case the
    heuristic failed, or returns None, in which case it has proven that no
    solution exists, or returns a solution (n, m, v) of the equation
    n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0.

    If this heuristic fails, the structure theorem approach will need to be
    used.

    The argument w == Dtheta/theta
    """
    # TODO: finish writing this and write tests
    c1 = c1 or Dummy('c1')

    p, a = fa.div(fd)
    q, b = wa.div(wd)

    B = max(0, derivation(DE.t, DE).degree(DE.t) - 1)
    C = max(p.degree(DE.t), q.degree(DE.t))

    if q.degree(DE.t) > B:
        eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)]
        s = solve(eqs, c1)
        if not s or not s[c1].is_Rational:
            # deg(q) > B, no solution for c.
            return None

        N, M = s[c1].as_numer_denom()  # N and M are integers
        N, M = Poly(N, DE.t), Poly(M, DE.t)

        nfmwa = N*fa*wd - M*wa*fd
        nfmwd = fd*wd
        Qv = is_log_deriv_k_t_radical_in_field(N*fa*wd - M*wa*fd, fd*wd, DE,
            'auto')
        if Qv is None:
            # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
            return None

        Q, e, v = Qv
        if e != 1:
            return None

        if Q.is_zero or v.is_zero:
            # Q == 0 or v == 0.
            return None

        return (Q*N, Q*M, v)

    if p.degree(DE.t) > B:
        return None

    c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC())
    l = fd.monic().lcm(wd.monic())*Poly(c, DE.t)
    ln, ls = splitfactor(l, DE)
    z = ls*ln.gcd(ln.diff(DE.t))

    if not z.has(DE.t):
        raise NotImplementedError("parametric_log_deriv_heu() "
            "heuristic failed: z in k.")

    u1, r1 = (fa*l.quo(fd)).div(z)  # (l*f).div(z)
    u2, r2 = (wa*l.quo(wd)).div(z)  # (l*w).div(z)

    eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))]
    s = solve(eqs, c1)
    if not s or not s[c1].is_Rational:
        # deg(q) <= B, no solution for c.
        return None

    M, N = s[c1].as_numer_denom()

    nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd
    nfmwd = fd*wd
    Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE)
    if Qv is None:
        # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
        return None

    Q, v = Qv

    if Q.is_zero or v.is_zero:
        # Q == 0 or v == 0.
        return None

    return (Q*N, Q*M, v)