def test_PolynomialRingBase(): assert srepr(ZZ.old_poly_ring(x)) == \ "GlobalPolynomialRing(ZZ, Symbol('x'))" assert srepr(ZZ[x].old_poly_ring(y)) == \ "GlobalPolynomialRing(ZZ[x], Symbol('y'))" assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \ "GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))"
def test_FreeModule(): M1 = FreeModule(QQ.old_poly_ring(x), 2) assert M1 == FreeModule(QQ.old_poly_ring(x), 2) assert M1 != FreeModule(QQ.old_poly_ring(y), 2) assert M1 != FreeModule(QQ.old_poly_ring(x), 3) M2 = FreeModule(QQ.old_poly_ring(x, order="ilex"), 2) assert [x, 1] in M1 assert [x] not in M1 assert [2, y] not in M1 assert [1/(x + 1), 2] not in M1 e = M1.convert([x, x**2 + 1]) X = QQ.old_poly_ring(x).convert(x) assert e == [X, X**2 + 1] assert e == [x, x**2 + 1] assert 2*e == [2*x, 2*x**2 + 2] assert e*2 == [2*x, 2*x**2 + 2] assert e/2 == [x/2, (x**2 + 1)/2] assert x*e == [x**2, x**3 + x] assert e*x == [x**2, x**3 + x] assert X*e == [x**2, x**3 + x] assert e*X == [x**2, x**3 + x] assert [x, 1] in M2 assert [x] not in M2 assert [2, y] not in M2 assert [1/(x + 1), 2] in M2 e = M2.convert([x, x**2 + 1]) X = QQ.old_poly_ring(x, order="ilex").convert(x) assert e == [X, X**2 + 1] assert e == [x, x**2 + 1] assert 2*e == [2*x, 2*x**2 + 2] assert e*2 == [2*x, 2*x**2 + 2] assert e/2 == [x/2, (x**2 + 1)/2] assert x*e == [x**2, x**3 + x] assert e*x == [x**2, x**3 + x] assert e/(1 + x) == [x/(1 + x), (x**2 + 1)/(1 + x)] assert X*e == [x**2, x**3 + x] assert e*X == [x**2, x**3 + x] M3 = FreeModule(QQ.old_poly_ring(x, y), 2) assert M3.convert(e) == M3.convert([x, x**2 + 1]) assert not M3.is_submodule(0) assert not M3.is_zero() raises(NotImplementedError, lambda: ZZ.old_poly_ring(x).free_module(2)) raises(NotImplementedError, lambda: FreeModulePolyRing(ZZ, 2)) raises(CoercionFailed, lambda: M1.convert(QQ.old_poly_ring(x).free_module(3) .convert([1, 2, 3]))) raises(CoercionFailed, lambda: M3.convert(1))
def test_DDM_hstack(): A = DDM([[ZZ(1), ZZ(2), ZZ(3)]], (1, 3), ZZ) B = DDM([[ZZ(4), ZZ(5)]], (1, 2), ZZ) C = DDM([[ZZ(6)]], (1, 1), ZZ) Ah = A.hstack(B) assert Ah.shape == (1, 5) assert Ah.domain == ZZ assert Ah == DDM([[ZZ(1), ZZ(2), ZZ(3), ZZ(4), ZZ(5)]], (1, 5), ZZ) Ah = A.hstack(B, C) assert Ah.shape == (1, 6) assert Ah.domain == ZZ assert Ah == DDM([[ZZ(1), ZZ(2), ZZ(3), ZZ(4), ZZ(5), ZZ(6)]], (1, 6), ZZ)
def test_DDM_init(): items = [[ZZ(0), ZZ(1), ZZ(2)], [ZZ(3), ZZ(4), ZZ(5)]] shape = (2, 3) ddm = DDM(items, shape, ZZ) assert ddm.shape == shape assert ddm.rows == 2 assert ddm.cols == 3 assert ddm.domain == ZZ raises(DDMBadInputError, lambda: DDM([[ZZ(2), ZZ(3)]], (2, 2), ZZ)) raises(DDMBadInputError, lambda: DDM([[ZZ(1)], [ZZ(2), ZZ(3)]], (2, 2), ZZ))
def test_DDM_getitem(): dm = DDM([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) assert dm.getitem(1, 1) == ZZ(5) assert dm.getitem(1, -2) == ZZ(5) assert dm.getitem(-1, -3) == ZZ(7) raises(IndexError, lambda: dm.getitem(3, 3))
def test_DDM_det(): # 0x0 case A = DDM([], (0, 0), ZZ) assert A.det() == ZZ(1) # 1x1 case A = DDM([[ZZ(2)]], (1, 1), ZZ) assert A.det() == ZZ(2) # 2x2 case A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.det() == ZZ(-2) # 3x3 with swap A = DDM([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(0) # 2x2 QQ case A = DDM([[QQ(1, 2), QQ(1, 2)], [QQ(1, 3), QQ(1, 4)]], (2, 2), QQ) assert A.det() == QQ(-1, 24) # Nonsquare error A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) raises(DDMShapeError, lambda: A.det()) # Nonsquare error with empty matrix A = DDM([], (0, 1), ZZ) raises(DDMShapeError, lambda: A.det())
def test_DomainMatrix_extract(): dM1 = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) dM2 = DomainMatrix([ [ZZ(1), ZZ(3)], [ZZ(7), ZZ(9)]], (2, 2), ZZ) assert dM1.extract([0, 2], [0, 2]) == dM2 assert dM1.to_sparse().extract([0, 2], [0, 2]) == dM2.to_sparse() assert dM1.extract([0, -1], [0, -1]) == dM2 assert dM1.to_sparse().extract([0, -1], [0, -1]) == dM2.to_sparse() dM3 = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(2)], [ZZ(4), ZZ(5), ZZ(5)], [ZZ(4), ZZ(5), ZZ(5)]], (3, 3), ZZ) assert dM1.extract([0, 1, 1], [0, 1, 1]) == dM3 assert dM1.to_sparse().extract([0, 1, 1], [0, 1, 1]) == dM3.to_sparse() empty = [ ([], [], (0, 0)), ([1], [], (1, 0)), ([], [1], (0, 1)), ] for rows, cols, size in empty: assert dM1.extract(rows, cols) == DomainMatrix.zeros(size, ZZ).to_dense() assert dM1.to_sparse().extract(rows, cols) == DomainMatrix.zeros(size, ZZ) dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) bad_indices = [([2], [0]), ([0], [2]), ([-3], [0]), ([0], [-3])] for rows, cols in bad_indices: raises(IndexError, lambda: dM.extract(rows, cols)) raises(IndexError, lambda: dM.to_sparse().extract(rows, cols))
def test_DomainMatrix_scalarmul(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) lamda = DomainScalar(QQ(3)/QQ(2), QQ) assert A * lamda == DomainMatrix([[QQ(3, 2), QQ(3)], [QQ(9, 2), QQ(6)]], (2, 2), QQ) assert A * 2 == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) assert A * DomainScalar(ZZ(0), ZZ) == DomainMatrix([[ZZ(0)]*2]*2, (2, 2), ZZ) assert A * DomainScalar(ZZ(1), ZZ) == A raises(TypeError, lambda: A * 1.5)
def test_DomainMatrix_vstack(): A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) B = DomainMatrix([[QQ(3), QQ(4)], [QQ(5), QQ(6)]], (2, 2), QQ) AB = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) assert A.vstack(B) == AB
def test_DomainMatrix_flat(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
def test_DomainMatrix_transpose(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AT = DomainMatrix([[ZZ(1), ZZ(3)], [ZZ(2), ZZ(4)]], (2, 2), ZZ) assert A.transpose() == AT
def test_DomainMatrix_repr(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert repr(A) == 'DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)'
def test_DomainMatrix_to_Matrix(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_Matrix() == Matrix([[1, 2], [3, 4]])
def test_DomainMatrix_to_sparse(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A_sparse = A.to_sparse() assert A_sparse.rep == {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}
def test_DomainMatrix_to_field(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = A.to_field() assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
def test_DomainMatrix_convert_to(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = A.convert_to(QQ) assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
def test_DomainMatrix_is_zero_matrix(): A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ) B = DomainMatrix([[ZZ(0)]], (1, 1), ZZ) assert A.is_zero_matrix is False assert B.is_zero_matrix is True
def test_DomainMatrix_applyfunc(): A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) B = DomainMatrix([[ZZ(2), ZZ(4)]], (1, 2), ZZ) assert A.applyfunc(lambda x: 2*x) == B
def test_DomainMatrix_add(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) assert A + A == A.add(A) == B A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[2, 3], [3, 4]] raises(TypeError, lambda: A + L) raises(TypeError, lambda: L + A) A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DDMShapeError, lambda: A1 + A2) raises(DDMShapeError, lambda: A2 + A1) raises(DDMShapeError, lambda: A1.add(A2)) raises(DDMShapeError, lambda: A2.add(A1)) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Asum = DomainMatrix([[QQ(2), QQ(4)], [QQ(6), QQ(8)]], (2, 2), QQ) assert Az + Aq == Asum assert Aq + Az == Asum raises(DDMDomainError, lambda: Az.add(Aq)) raises(DDMDomainError, lambda: Aq.add(Az)) As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Asd = As + Ad Ads = Ad + As assert Asd == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ) assert Asd.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ) assert Ads == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ) assert Ads.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ) raises(DDMFormatError, lambda: As.add(Ad))
def test_DomainMatrix_getitem(): dM = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) assert dM[1:,:-2] == DomainMatrix([[ZZ(4)], [ZZ(7)]], (2, 1), ZZ) assert dM[2,:-2] == DomainMatrix([[ZZ(7)]], (1, 1), ZZ) assert dM[:-2,:-2] == DomainMatrix([[ZZ(1)]], (1, 1), ZZ) assert dM[:-1,0:2] == DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(4), ZZ(5)]], (2, 2), ZZ) assert dM[:, -1] == DomainMatrix([[ZZ(3)], [ZZ(6)], [ZZ(9)]], (3, 1), ZZ) assert dM[-1, :] == DomainMatrix([[ZZ(7), ZZ(8), ZZ(9)]], (1, 3), ZZ) assert dM[::-1, :] == DomainMatrix([ [ZZ(7), ZZ(8), ZZ(9)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(1), ZZ(2), ZZ(3)]], (3, 3), ZZ) raises(IndexError, lambda: dM[4, :-2]) raises(IndexError, lambda: dM[:-2, 4]) assert dM[1, 2] == DomainScalar(ZZ(6), ZZ) assert dM[-2, 2] == DomainScalar(ZZ(6), ZZ) assert dM[1, -2] == DomainScalar(ZZ(5), ZZ) assert dM[-1, -3] == DomainScalar(ZZ(7), ZZ) raises(IndexError, lambda: dM[3, 3]) raises(IndexError, lambda: dM[1, 4]) raises(IndexError, lambda: dM[-1, -4]) dM = DomainMatrix({0: {0: ZZ(1)}}, (10, 10), ZZ) assert dM[5, 5] == DomainScalar(ZZ(0), ZZ) assert dM[0, 0] == DomainScalar(ZZ(1), ZZ) dM = DomainMatrix({1: {0: 1}}, (2,1), ZZ) assert dM[0:, 0] == DomainMatrix({1: {0: 1}}, (2, 1), ZZ) raises(IndexError, lambda: dM[3, 0]) dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) assert dM[:2,:2] == DomainMatrix({}, (2, 2), ZZ) assert dM[2:,2:] == DomainMatrix({0: {0: 1}, 2: {2: 1}}, (3, 3), ZZ) assert dM[3:,3:] == DomainMatrix({1: {1: 1}}, (2, 2), ZZ) assert dM[2:, 6:] == DomainMatrix({}, (3, 0), ZZ)
def test_DomainMatrix_sub(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) assert A - A == A.sub(A) == B A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[2, 3], [3, 4]] raises(TypeError, lambda: A - L) raises(TypeError, lambda: L - A) A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DDMShapeError, lambda: A1 - A2) raises(DDMShapeError, lambda: A2 - A1) raises(DDMShapeError, lambda: A1.sub(A2)) raises(DDMShapeError, lambda: A2.sub(A1)) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Adiff = DomainMatrix([[QQ(0), QQ(0)], [QQ(0), QQ(0)]], (2, 2), QQ) assert Az - Aq == Adiff assert Aq - Az == Adiff raises(DDMDomainError, lambda: Az.sub(Aq)) raises(DDMDomainError, lambda: Aq.sub(Az)) As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Asd = As - Ad Ads = Ad - As assert Asd == DomainMatrix([[-1, -1], [-1, -4]], (2, 2), ZZ) assert Asd.rep == DDM([[-1, -1], [-1, -4]], (2, 2), ZZ) assert Asd == -Ads assert Asd.rep == -Ads.rep
def test_DomainMatrix_pickling(): import pickle dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) assert pickle.loads(pickle.dumps(dM)) == dM dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert pickle.loads(pickle.dumps(dM)) == dM
def test_DomainMatrix_neg(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aneg = DomainMatrix([[ZZ(-1), ZZ(-2)], [ZZ(-3), ZZ(-4)]], (2, 2), ZZ) assert -A == A.neg() == Aneg
def test_DDM_charpoly(): A = DDM([], (0, 0), ZZ) assert A.charpoly() == [ZZ(1)] A = DDM([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) Avec = [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)] assert A.charpoly() == Avec A = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DDMShapeError, lambda: A.charpoly())
def test_DomainMatrix_mul(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ) assert A*A == A.matmul(A) == A2 A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[1, 2], [3, 4]] raises(TypeError, lambda: A * L) raises(TypeError, lambda: L * A) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Aprod = DomainMatrix([[QQ(7), QQ(10)], [QQ(15), QQ(22)]], (2, 2), QQ) assert Az * Aq == Aprod assert Aq * Az == Aprod raises(DDMDomainError, lambda: Az.matmul(Aq)) raises(DDMDomainError, lambda: Aq.matmul(Az)) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AA = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) x = ZZ(2) assert A * x == x * A == A.mul(x) == AA A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AA = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) x = ZZ(0) assert A * x == x * A == A.mul(x) == AA As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Asd = As * Ad Ads = Ad * As assert Asd == DomainMatrix([[3, 4], [2, 4]], (2, 2), ZZ) assert Asd.rep == DDM([[3, 4], [2, 4]], (2, 2), ZZ) assert Ads == DomainMatrix([[4, 1], [8, 3]], (2, 2), ZZ) assert Ads.rep == DDM([[4, 1], [8, 3]], (2, 2), ZZ)
def test_DDM_convert_to(): ddm = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ) assert ddm.convert_to(ZZ) == ddm ddmq = ddm.convert_to(QQ) assert ddmq.domain == QQ
def test_DomainMatrix_pow(): eye = DomainMatrix.eye(2, ZZ) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ) A3 = DomainMatrix([[ZZ(37), ZZ(54)], [ZZ(81), ZZ(118)]], (2, 2), ZZ) assert A**0 == A.pow(0) == eye assert A**1 == A.pow(1) == A assert A**2 == A.pow(2) == A2 assert A**3 == A.pow(3) == A3 raises(TypeError, lambda: A ** Rational(1, 2)) raises(NotImplementedError, lambda: A ** -1) raises(NotImplementedError, lambda: A.pow(-1)) A = DomainMatrix.zeros((2, 1), ZZ) raises(NonSquareMatrixError, lambda: A ** 1)
def test_DDM_neg(): A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) An = DDM([[ZZ(-1)], [ZZ(-2)]], (2, 1), ZZ) assert -A == A.neg() == An assert -An == An.neg() == A
def test_DomainMatrix_det(): A = DomainMatrix([], (0, 0), ZZ) assert A.det() == 1 A = DomainMatrix([[1]], (1, 1), ZZ) assert A.det() == 1 A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.det() == ZZ(-2) A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(-1) A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(0) Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(NonSquareMatrixError, lambda: Ans.det()) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) assert A.det() == QQ(-2)
def test_DDM_vstack(): A = DDM([[ZZ(1)], [ZZ(2)], [ZZ(3)]], (3, 1), ZZ) B = DDM([[ZZ(4)], [ZZ(5)]], (2, 1), ZZ) C = DDM([[ZZ(6)]], (1, 1), ZZ) Ah = A.vstack(B) assert Ah.shape == (5, 1) assert Ah.domain == ZZ assert Ah == DDM([[ZZ(1)], [ZZ(2)], [ZZ(3)], [ZZ(4)], [ZZ(5)]], (5, 1), ZZ) Ah = A.vstack(B, C) assert Ah.shape == (6, 1) assert Ah.domain == ZZ assert Ah == DDM([[ZZ(1)], [ZZ(2)], [ZZ(3)], [ZZ(4)], [ZZ(5)], [ZZ(6)]], (6, 1), ZZ)
def test_DomainMatrix_charpoly(): A = DomainMatrix([], (0, 0), ZZ) assert A.charpoly() == [ZZ(1)] A = DomainMatrix([[1]], (1, 1), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-1)] A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)] A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)] Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(NonSquareMatrixError, lambda: Ans.charpoly())
def test_DMP(): assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)' assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \ "DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))"
def test_DomainMatrix_diag(): A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (2, 2), ZZ) assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ) == A A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (3, 4), ZZ) assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ, (3, 4)) == A