def eval_sum_symbolic(f, limits):
    from sympy.functions import harmonic, bernoulli

    f_orig = f
    (i, a, b) = limits
    if not f.has(i):
        return f*(b - a + 1)

    # Linearity
    if f.is_Mul:
        L, R = f.as_two_terms()

        if not L.has(i):
            sR = eval_sum_symbolic(R, (i, a, b))
            if sR:
                return L*sR

        if not R.has(i):
            sL = eval_sum_symbolic(L, (i, a, b))
            if sL:
                return R*sL

        try:
            f = apart(f, i)  # see if it becomes an Add
        except PolynomialError:
            pass

    if f.is_Add:
        L, R = f.as_two_terms()
        lrsum = telescopic(L, R, (i, a, b))

        if lrsum:
            return lrsum

        lsum = eval_sum_symbolic(L, (i, a, b))
        rsum = eval_sum_symbolic(R, (i, a, b))

        if None not in (lsum, rsum):
            r = lsum + rsum
            if not r is S.NaN:
                return r

    # Polynomial terms with Faulhaber's formula
    n = Wild('n')
    result = f.match(i**n)

    if result is not None:
        n = result[n]

        if n.is_Integer:
            if n >= 0:
                if (b is S.Infinity and not a is S.NegativeInfinity) or \
                   (a is S.NegativeInfinity and not b is S.Infinity):
                    return S.Infinity
                return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
            elif a.is_Integer and a >= 1:
                if n == -1:
                    return harmonic(b) - harmonic(a - 1)
                else:
                    return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))

    if not (a.has(S.Infinity, S.NegativeInfinity) or
            b.has(S.Infinity, S.NegativeInfinity)):
        # Geometric terms
        c1 = Wild('c1', exclude=[i])
        c2 = Wild('c2', exclude=[i])
        c3 = Wild('c3', exclude=[i])
        wexp = Wild('wexp')

        # Here we first attempt powsimp on f for easier matching with the
        # exponential pattern, and attempt expansion on the exponent for easier
        # matching with the linear pattern.
        e = f.powsimp().match(c1 ** wexp)
        if e is not None:
            e_exp = e.pop(wexp).expand().match(c2*i + c3)
            if e_exp is not None:
                e.update(e_exp)

        if e is not None:
            p = (c1**c3).subs(e)
            q = (c1**c2).subs(e)

            r = p*(q**a - q**(b + 1))/(1 - q)
            l = p*(b - a + 1)

            return Piecewise((l, Eq(q, S.One)), (r, True))

        r = gosper_sum(f, (i, a, b))

        if isinstance(r, (Mul,Add)):
            from sympy import ordered, Tuple
            non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
            den = denom(together(r))
            den_sym = non_limit & den.free_symbols
            args = []
            for v in ordered(den_sym):
                try:
                    s = solve(den, v)
                    m = Eq(v, s[0]) if s else S.false
                    if m != False:
                        args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
                    break
                except NotImplementedError:
                    continue

            args.append((r, True))
            return Piecewise(*args)

        if not r in (None, S.NaN):
            return r

    h = eval_sum_hyper(f_orig, (i, a, b))
    if h is not None:
        return h

    factored = f_orig.factor()
    if factored != f_orig:
        return eval_sum_symbolic(factored, (i, a, b))
Пример #2
0
def eval_sum_symbolic(f, limits):
    from sympy.functions import harmonic, bernoulli

    f_orig = f
    (i, a, b) = limits
    if not f.has(i):
        return f*(b - a + 1)

    # Linearity
    if f.is_Mul:
        L, R = f.as_two_terms()

        if not L.has(i):
            sR = eval_sum_symbolic(R, (i, a, b))
            if sR:
                return L*sR

        if not R.has(i):
            sL = eval_sum_symbolic(L, (i, a, b))
            if sL:
                return R*sL

        try:
            f = apart(f, i)  # see if it becomes an Add
        except PolynomialError:
            pass

    if f.is_Add:
        L, R = f.as_two_terms()
        lrsum = telescopic(L, R, (i, a, b))

        if lrsum:
            return lrsum

        lsum = eval_sum_symbolic(L, (i, a, b))
        rsum = eval_sum_symbolic(R, (i, a, b))

        if None not in (lsum, rsum):
            r = lsum + rsum
            if not r is S.NaN:
                return r

    # Polynomial terms with Faulhaber's formula
    n = Wild('n')
    result = f.match(i**n)

    if result is not None:
        n = result[n]

        if n.is_Integer:
            if n >= 0:
                if (b is S.Infinity and not a is S.NegativeInfinity) or \
                   (a is S.NegativeInfinity and not b is S.Infinity):
                    return S.Infinity
                return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
            elif a.is_Integer and a >= 1:
                if n == -1:
                    return harmonic(b) - harmonic(a - 1)
                else:
                    return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))

    if not (a.has(S.Infinity, S.NegativeInfinity) or
            b.has(S.Infinity, S.NegativeInfinity)):
        # Geometric terms
        c1 = Wild('c1', exclude=[i])
        c2 = Wild('c2', exclude=[i])
        c3 = Wild('c3', exclude=[i])
        wexp = Wild('wexp')

        # Here we first attempt powsimp on f for easier matching with the
        # exponential pattern, and attempt expansion on the exponent for easier
        # matching with the linear pattern.
        e = f.powsimp().match(c1 ** wexp)
        if e is not None:
            e_exp = e.pop(wexp).expand().match(c2*i + c3)
            if e_exp is not None:
                e.update(e_exp)

        if e is not None:
            p = (c1**c3).subs(e)
            q = (c1**c2).subs(e)

            r = p*(q**a - q**(b + 1))/(1 - q)
            l = p*(b - a + 1)

            return Piecewise((l, Eq(q, S.One)), (r, True))

        r = gosper_sum(f, (i, a, b))

        if isinstance(r, (Mul,Add)):
            from sympy import ordered, Tuple
            non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
            den = denom(together(r))
            den_sym = non_limit & den.free_symbols
            args = []
            for v in ordered(den_sym):
                try:
                    s = solve(den, v)
                    m = Eq(v, s[0]) if s else S.false
                    if m != False:
                        args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
                    break
                except NotImplementedError:
                    continue

            args.append((r, True))
            return Piecewise(*args)

        if not r in (None, S.NaN):
            return r

    h = eval_sum_hyper(f_orig, (i, a, b))
    if h is not None:
        return h

    factored = f_orig.factor()
    if factored != f_orig:
        return eval_sum_symbolic(factored, (i, a, b))