Пример #1
0
def test_pde_separate_mul():
    x, y, z, t = symbols("x,y,z,t")
    c = Symbol("C", real=True)
    Phi = Function("Phi")
    F, R, T, X, Y, Z, u = map(Function, "FRTXYZu")
    r, theta, z = symbols("r,theta,z")

    # Something simple :)
    eq = Eq(D(F(x, y, z), x) + D(F(x, y, z), y) + D(F(x, y, z), z))

    # Duplicate arguments in functions
    raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), u(z, z)]))
    # Wrong number of arguments
    raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), Y(y)]))
    # Wrong variables: [x, y] -> [x, z]
    raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(t), Y(x, y)]))

    assert pde_separate_mul(eq, F(x, y, z), [Y(y), u(x, z)]) == [
        D(Y(y), y) / Y(y),
        -D(u(x, z), x) / u(x, z) - D(u(x, z), z) / u(x, z),
    ]
    assert pde_separate_mul(eq, F(x, y, z), [X(x), Y(y), Z(z)]) == [
        D(X(x), x) / X(x),
        -D(Z(z), z) / Z(z) - D(Y(y), y) / Y(y),
    ]

    # wave equation
    wave = Eq(D(u(x, t), t, t), c ** 2 * D(u(x, t), x, x))
    res = pde_separate_mul(wave, u(x, t), [X(x), T(t)])
    assert res == [D(X(x), x, x) / X(x), D(T(t), t, t) / (c ** 2 * T(t))]

    # Laplace equation in cylindrical coords
    eq = Eq(
        1 / r * D(Phi(r, theta, z), r)
        + D(Phi(r, theta, z), r, 2)
        + 1 / r ** 2 * D(Phi(r, theta, z), theta, 2)
        + D(Phi(r, theta, z), z, 2)
    )
    # Separate z
    res = pde_separate_mul(eq, Phi(r, theta, z), [Z(z), u(theta, r)])
    assert res == [
        D(Z(z), z, z) / Z(z),
        -D(u(theta, r), r, r) / u(theta, r)
        - D(u(theta, r), r) / (r * u(theta, r))
        - D(u(theta, r), theta, theta) / (r ** 2 * u(theta, r)),
    ]
    # Lets use the result to create a new equation...
    eq = Eq(res[1], c)
    # ...and separate theta...
    res = pde_separate_mul(eq, u(theta, r), [T(theta), R(r)])
    assert res == [
        D(T(theta), theta, theta) / T(theta),
        -r * D(R(r), r) / R(r) - r ** 2 * D(R(r), r, r) / R(r) - c * r ** 2,
    ]
    # ...or r...
    res = pde_separate_mul(eq, u(theta, r), [R(r), T(theta)])
    assert res == [
        r * D(R(r), r) / R(r) + r ** 2 * D(R(r), r, r) / R(r) + c * r ** 2,
        -D(T(theta), theta, theta) / T(theta),
    ]
Пример #2
0
def test_pde_separate_mul():
    x, y, z, t = symbols("x,y,z,t")
    c = Symbol("C", real=True)
    Phi = Function('Phi')
    F, R, T, X, Y, Z, u = map(Function, 'FRTXYZu')
    r, theta, z = symbols('r,theta,z')

    # Something simple :)
    eq = Eq(D(F(x, y, z), x) + D(F(x, y, z), y) + D(F(x, y, z), z), 0)

    # Duplicate arguments in functions
    raises(ValueError,
           lambda: pde_separate_mul(eq, F(x, y, z), [X(x), u(z, z)]))
    # Wrong number of arguments
    raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), Y(y)]))
    # Wrong variables: [x, y] -> [x, z]
    raises(ValueError,
           lambda: pde_separate_mul(eq, F(x, y, z), [X(t), Y(x, y)]))

    assert pde_separate_mul(eq, F(x, y, z), [Y(y), u(x, z)]) == \
        [D(Y(y), y)/Y(y), -D(u(x, z), x)/u(x, z) - D(u(x, z), z)/u(x, z)]
    assert pde_separate_mul(eq, F(x, y, z), [X(x), Y(y), Z(z)]) == \
        [D(X(x), x)/X(x), -D(Z(z), z)/Z(z) - D(Y(y), y)/Y(y)]

    # wave equation
    wave = Eq(D(u(x, t), t, t), c**2 * D(u(x, t), x, x))
    res = pde_separate_mul(wave, u(x, t), [X(x), T(t)])
    assert res == [D(X(x), x, x) / X(x), D(T(t), t, t) / (c**2 * T(t))]

    # Laplace equation in cylindrical coords
    eq = Eq(
        1 / r * D(Phi(r, theta, z), r) + D(Phi(r, theta, z), r, 2) +
        1 / r**2 * D(Phi(r, theta, z), theta, 2) + D(Phi(r, theta, z), z, 2),
        0)
    # Separate z
    res = pde_separate_mul(eq, Phi(r, theta, z), [Z(z), u(theta, r)])
    assert res == [
        D(Z(z), z, z) / Z(z),
        -D(u(theta, r), r, r) / u(theta, r) - D(u(theta, r), r) /
        (r * u(theta, r)) - D(u(theta, r), theta, theta) / (r**2 * u(theta, r))
    ]
    # Lets use the result to create a new equation...
    eq = Eq(res[1], c)
    # ...and separate theta...
    res = pde_separate_mul(eq, u(theta, r), [T(theta), R(r)])
    assert res == [
        D(T(theta), theta, theta) / T(theta),
        -r * D(R(r), r) / R(r) - r**2 * D(R(r), r, r) / R(r) - c * r**2
    ]
    # ...or r...
    res = pde_separate_mul(eq, u(theta, r), [R(r), T(theta)])
    assert res == [
        r * D(R(r), r) / R(r) + r**2 * D(R(r), r, r) / R(r) + c * r**2,
        -D(T(theta), theta, theta) / T(theta)
    ]