Пример #1
0
def test_solve_rational():
    assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
    assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
    assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
    assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
    assert solveset_real((x**2/(7 - x)).diff(x), x) == \
        FiniteSet(S(0), S(14))
Пример #2
0
def test_uselogcombine_1():
    assert solveset_real(log(x - 3) + log(x + 3), x) == \
        FiniteSet(sqrt(10))
    assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
    assert solveset_real(log(x + 3) + log(1 + 3/x) - 3) == FiniteSet(
        -3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
        -sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)
Пример #3
0
def test_garbage_input():
    raises(ValueError, lambda: solveset_real([x], x))
    raises(ValueError, lambda: solveset_real(x, pi))
    raises(ValueError, lambda: solveset_real(x, x ** 2))

    raises(ValueError, lambda: solveset_complex([x], x))
    raises(ValueError, lambda: solveset_complex(x, pi))
Пример #4
0
def test_solve_trig():
    from sympy.abc import n

    assert solveset_real(sin(x), x) == Union(
        imageset(Lambda(n, 2 * pi * n), S.Integers), imageset(Lambda(n, 2 * pi * n + pi), S.Integers)
    )

    assert solveset_real(sin(x) - 1, x) == imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)

    assert solveset_real(cos(x), x) == Union(
        imageset(Lambda(n, 2 * pi * n - pi / 2), S.Integers), imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)
    )

    assert solveset_real(sin(x) + cos(x), x) == Union(
        imageset(Lambda(n, 2 * n * pi - pi / 4), S.Integers), imageset(Lambda(n, 2 * n * pi + 3 * pi / 4), S.Integers)
    )

    assert solveset_real(sin(x) ** 2 + cos(x) ** 2, x) == S.EmptySet

    assert solveset_complex(cos(x) - S.Half, x) == Union(
        imageset(Lambda(n, 2 * n * pi + pi / 3), S.Integers), imageset(Lambda(n, 2 * n * pi - pi / 3), S.Integers)
    )

    y, a = symbols("y,a")
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == Union(
        imageset(Lambda(n, 2 * n * pi), S.Integers),
        imageset(Lambda(n, -I * (I * (2 * n * pi + arg(-exp(-2 * I * y))) + 2 * im(y))), S.Integers),
    )
Пример #5
0
def test_errorinverses():
    assert solveset_real(erf(x) - S.One/2, x) == \
        FiniteSet(erfinv(S.One/2))
    assert solveset_real(erfinv(x) - 2, x) == \
        FiniteSet(erf(2))
    assert solveset_real(erfc(x) - S.One, x) == \
        FiniteSet(erfcinv(S.One))
    assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
Пример #6
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))
Пример #7
0
def test_piecewise():
    eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
    f = Piecewise(((x - 2) ** 2, x >= 0), (0, True))
    assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
    absxm3 = Piecewise((x - 3, S(0) <= x - 3), (3 - x, S(0) > x - 3))
    y = Symbol("y", positive=True)
    assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
    assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
Пример #8
0
def test_solve_trig_simplified():
    from sympy.abc import n

    assert solveset_real(sin(x), x) == imageset(Lambda(n, n * pi), S.Integers)

    assert solveset_real(cos(x), x) == imageset(Lambda(n, n * pi + pi / 2), S.Integers)

    assert solveset_real(cos(x) + sin(x), x) == imageset(Lambda(n, n * pi - pi / 4), S.Integers)
Пример #9
0
def test_piecewise():
    eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
    assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
    absxm3 = Piecewise(
        (x - 3, S(0) <= x - 3),
        (3 - x, S(0) > x - 3)
    )
    y = Symbol('y', positive=True)
    assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
Пример #10
0
def test_solve_polynomial_cv_1a():
    """
    Test for solving on equations that can be converted to
    a polynomial equation using the change of variable y -> x**Rational(p, q)
    """
    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
    assert solveset_real(x ** Rational(1, 4) - 2, x) == FiniteSet(16)
    assert solveset_real(x ** Rational(1, 3) - 3, x) == FiniteSet(27)
    assert solveset_real(x * (x ** (S(1) / 3) - 3), x) == FiniteSet(S(0), S(27))
Пример #11
0
def test_piecewise():
    eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
    assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))

    absxm3 = Piecewise(
        (x - 3, S(0) <= x - 3),
        (3 - x, S(0) > x - 3))
    y = Symbol('y', positive=True)
    assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)

    f = Piecewise(((x - 2)**2, x >= 0), (0, True))
    assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))

    assert solveset(Piecewise((x + 1, x > 0), (I, True)) - I, x) == \
        Interval(-oo, 0)
Пример #12
0
def test_solve_polynomial():
    assert solveset_real(3 * x - 2, x) == FiniteSet(Rational(2, 3))

    assert solveset_real(x ** 2 - 1, x) == FiniteSet(-S(1), S(1))
    assert solveset_real(x - y ** 3, x) == FiniteSet(y ** 3)

    a11, a12, a21, a22, b1, b2 = symbols("a11, a12, a21, a22, b1, b2")

    assert solveset_real(x ** 3 - 15 * x - 4, x) == FiniteSet(-2 + 3 ** Rational(1, 2), S(4), -2 - 3 ** Rational(1, 2))

    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
    assert solveset_real(x ** Rational(1, 4) - 2, x) == FiniteSet(16)
    assert solveset_real(x ** Rational(1, 3) - 3, x) == FiniteSet(27)
    assert len(solveset_real(x ** 5 + x ** 3 + 1, x)) == 1
    assert len(solveset_real(-2 * x ** 3 + 4 * x ** 2 - 2 * x + 6, x)) > 0
Пример #13
0
def test_solve_sqrt_3():
    R = Symbol("R")
    eq = sqrt(2) * R * sqrt(1 / (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 / (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(
        *[
            S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3,
            -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
            + 40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            + sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
            + S(5) / 3
            + I
            * (
                -sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
                - sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
                + 40 * im(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            ),
        ]
    )

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q) ** 2 + (-m / (2 * q) + S(1) / 2) ** 2) + sqrt(
        (-m ** 2 / 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
        + (m ** 2 / 2 - m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
    )
    raises(NotImplementedError, lambda: solveset_real(eq, q))
Пример #14
0
def test_solve_sqrt_3():
    R = Symbol('R')
    eq = sqrt(2) * R * sqrt(1 /
                            (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 /
                                                                 (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(*[
        S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) /
        3, -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3 +
        40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) *
                     (S(251) / 27 + sqrt(111) * I / 9)**(S(1) / 3))) / 9 +
        sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3 + S(5) / 3 + I *
        (-sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3 -
         sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3 + 40 * im(1 / (
             (-S(1) / 2 - sqrt(3) * I / 2) *
             (S(251) / 27 + sqrt(111) * I / 9)**(S(1) / 3))) / 9)
    ])

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q)**2 + (-m / (2 * q) + S(1) / 2)**2) + sqrt(
        (-m**2 / 2 - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 - S(1) / 4)**2 +
        (m**2 / 2 - m - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 -
         S(1) / 4)**2)
    raises(NotImplementedError, lambda: solveset_real(eq, q))
Пример #15
0
def test_solve_sqrt_3():
    R = Symbol('R')
    eq = sqrt(2) * R * sqrt(1 /
                            (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 /
                                                                 (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(*[
        S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) /
        3, -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3 +
        40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) *
                     (S(251) / 27 + sqrt(111) * I / 9)**(S(1) / 3))) / 9 +
        sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3 + S(5) / 3 + I *
        (-sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3 -
         sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3 + 40 * im(1 / (
             (-S(1) / 2 - sqrt(3) * I / 2) *
             (S(251) / 27 + sqrt(111) * I / 9)**(S(1) / 3))) / 9)
    ])

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q)**2 + (-m / (2 * q) + S(1) / 2)**2) + sqrt(
        (-m**2 / 2 - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 - S(1) / 4)**2 +
        (m**2 / 2 - m - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 -
         S(1) / 4)**2)
    unsolved_object = ConditionSet(
        q,
        Eq((-2 * sqrt(4 * q**2 * (m - q)**2 + (-m + q)**2) + sqrt(
            (-2 * m**2 - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) - 1)**2 +
            (2 * m**2 - 4 * m - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) - 1)**2)
            * Abs(q)) / Abs(q), 0), S.Reals)
    assert solveset_real(eq, q) == unsolved_object
Пример #16
0
def test_rewrite_trigh():
    # if this import passes then the test below should also pass
    from sympy import sech
    assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
        2 * atanh(-S.Half + sqrt(5) / 2 - sqrt(-2 * sqrt(5) + 2) / 2),
        2 * atanh(-S.Half + sqrt(5) / 2 + sqrt(-2 * sqrt(5) + 2) / 2),
        2 * atanh(-sqrt(5) / 2 - S.Half + sqrt(2 + 2 * sqrt(5)) / 2),
        2 * atanh(-sqrt(2 + 2 * sqrt(5)) / 2 - sqrt(5) / 2 - S.Half))
Пример #17
0
def test_rewrite_trigh():
    # if this import passes then the test below should also pass
    from sympy import sech
    assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
        2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
        2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
        2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
        2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half))
Пример #18
0
    def codomain_interval(f, set_val, *sym):
        symb = sym[0]
        df1 = diff(f, symb)
        df2 = diff(df1, symb)
        der_zero = solveset_real(df1, symb)
        der_zero_in_dom = closure_handle(set_val, der_zero)

        local_maxima = set()
        local_minima = set()
        start_val = limit(f, symb, set_val.start)
        end_val = limit(f, symb, set_val.end, '-')

        if start_val is S.Infinity or end_val is S.Infinity:
            local_maxima = set([(oo, True)])
        elif start_val is S.NegativeInfinity or end_val is S.NegativeInfinity:
            local_minima = set([(-oo, True)])

        if local_maxima == set():
            if start_val > end_val:
                local_maxima = set([(start_val, set_val.left_open)])
            elif start_val < end_val:
                local_maxima = set([(end_val, set_val.right_open)])
            else:
                local_maxima = set([(start_val, set_val.left_open
                                     and set_val.right_open)])

        if local_minima == set():
            if start_val < end_val:
                local_minima = set([(start_val, set_val.left_open)])
            elif start_val > end_val:
                local_minima = set([(end_val, set_val.right_open)])
            else:
                local_minima = set([(start_val, set_val.left_open
                                     and set_val.right_open)])

        for i in der_zero_in_dom:
            exist = not i in set_val
            if df2.subs({symb: i}) < 0:
                local_maxima.add((f.subs({symb: i}), exist))
            elif df2.subs({symb: i}) > 0:
                local_minima.add((f.subs({symb: i}), exist))

        maximum = (-oo, True)
        minimum = (oo, True)

        for i in local_maxima:
            if i[0] > maximum[0]:
                maximum = i
            elif i[0] == maximum[0]:
                maximum = (maximum[0], i[1] and maximum[1])

        for i in local_minima:
            if i[0] < minimum[0]:
                minimum = i
            elif i[0] == minimum[0]:
                minimum = (minimum[0], i[1] and minimum[1])

        return Union(Interval(minimum[0], maximum[0], minimum[1], maximum[1]))
Пример #19
0
def test_solve_trig():
    from sympy.abc import n
    assert solveset_real(sin(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))

    assert solveset_real(sin(x) - 1, x) == \
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)

    assert solveset_real(cos(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert solveset_real(sin(x) + cos(x), x) == \
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
Пример #20
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2 * Abs(x - 3), x) == FiniteSet(1, 9)
    assert solveset_real(2 * Abs(x) - Abs(x - 1), x) == FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1) / (x - 5)) <= S(1) / 3, domain=S.Reals) == Interval(-1, 2)

    # issue #10069
    eq = abs(1 / (x - 1)) - 1 > 0
    u = Union(Interval.open(0, 1), Interval.open(1, 2))
    assert solveset_real(eq, x) == u
    assert solveset(eq, x, domain=S.Reals) == u

    raises(ValueError, lambda: solveset(abs(x) - 1, x))
Пример #21
0
def test_solve_polynomial():
    assert solveset_real(3 * x - 2, x) == FiniteSet(Rational(2, 3))

    assert solveset_real(x**2 - 1, x) == FiniteSet(-S(1), S(1))
    assert solveset_real(x - y**3, x) == FiniteSet(y**3)

    a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')

    assert solveset_real(x**3 - 15 * x - 4,
                         x) == FiniteSet(-2 + 3**Rational(1, 2), S(4),
                                         -2 - 3**Rational(1, 2))

    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
    assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
    assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
    assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
    assert len(solveset_real(-2 * x**3 + 4 * x**2 - 2 * x + 6, x)) > 0
Пример #22
0
def test_solve_trig():
    from sympy.abc import n
    assert solveset_real(sin(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))

    assert solveset_real(sin(x) - 1, x) == \
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)

    assert solveset_real(cos(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert solveset_real(sin(x) + cos(x), x) == \
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
Пример #23
0
    def codomain_interval(f, set_val, *sym):
        symb = sym[0]
        df1 = diff(f, symb)
        df2 = diff(df1, symb)
        der_zero = solveset_real(df1, symb)
        der_zero_in_dom = closure_handle(set_val, der_zero)

        local_maxima = set()
        local_minima = set()
        start_val = limit(f, symb, set_val.start)
        end_val = limit(f, symb, set_val.end, '-')

        if start_val is S.Infinity or end_val is S.Infinity:
            local_maxima = set([(oo, True)])
        elif start_val is S.NegativeInfinity or end_val is S.NegativeInfinity:
            local_minima = set([(-oo, True)])

        if local_maxima == set():
            if start_val > end_val:
                local_maxima = set([(start_val, set_val.left_open)])
            elif start_val < end_val:
                local_maxima = set([(end_val, set_val.right_open)])
            else:
                local_maxima = set([(start_val, set_val.left_open and set_val.right_open)])

        if local_minima == set():
            if start_val < end_val:
                local_minima = set([(start_val, set_val.left_open)])
            elif start_val > end_val:
                local_minima = set([(end_val, set_val.right_open)])
            else:
                local_minima = set([(start_val, set_val.left_open and set_val.right_open)])

        for i in der_zero_in_dom:
            exist = not i in set_val
            if df2.subs({symb: i}) < 0:
                local_maxima.add((f.subs({symb: i}), exist))
            elif df2.subs({symb: i}) > 0:
                local_minima.add((f.subs({symb: i}), exist))

        maximum = (-oo, True)
        minimum = (oo, True)

        for i in local_maxima:
            if i[0] > maximum[0]:
                maximum = i
            elif i[0] == maximum[0]:
                maximum = (maximum[0], i[1] and maximum[1])

        for i in local_minima:
            if i[0] < minimum[0]:
                minimum = i
            elif i[0] == minimum[0]:
                minimum = (minimum[0], i[1] and minimum[1])

        return Union(Interval(minimum[0], maximum[0], minimum[1], maximum[1]))
Пример #24
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1)/(x - 5)) <= S(1)/3, domain=S.Reals
        ) == Interval(-1, 2)

    # issue #10069
    assert solveset_real(abs(1/(x - 1)) - 1 > 0, x) == \
        ConditionSet(x, Eq((1 - Abs(x - 1))/Abs(x - 1) > 0, 0),
            S.Reals)
    assert solveset(abs(1/(x - 1)) - 1 > 0, x, domain=S.Reals
        ) == Union(Interval.open(0, 1), Interval.open(1, 2))
Пример #25
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1)/(x - 5)) <= S(1)/3, domain=S.Reals
        ) == Interval(-1, 2)

    # issue #10069
    assert solveset_real(abs(1/(x - 1)) - 1 > 0, x) == \
        ConditionSet(x, Eq((1 - Abs(x - 1))/Abs(x - 1) > 0, 0),
            S.Reals)
    assert solveset(abs(1/(x - 1)) - 1 > 0, x, domain=S.Reals
        ) == Union(Interval.open(0, 1), Interval.open(1, 2))
Пример #26
0
 def getTmOptimal2(v0, vt, p0, pt, delay=0.0):
     t = symbols('t')
     a = (12.0 * (t * (p0 - pt + t*v0) - 0.5*(t**2)*(v0 - vt)))/(t**4)
     b = -(4 * (1.5*(p0 - pt) + t*v0 + 0.5*t*vt))/(t**2)
     j = ((a*t + b)**3 - b**3) / a
     djdt = diff(j, t)
     try:
         res = solveset_real(djdt, t)
     except Exception as e:
         res = solve(djdt, t)
     print("Calculating tm for v0={}, vt={}, p0={}, pt={}, tm={}".format(v0, vt, p0, pt, float(min(res))))
     return float(min(res)) + delay
Пример #27
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1) / (x - 5)) <= S(1) / 3,
                    domain=S.Reals) == Interval(-1, 2)

    # issue #10069
    eq = abs(1 / (x - 1)) - 1 > 0
    u = Union(Interval.open(0, 1), Interval.open(1, 2))
    assert solveset_real(eq, x) == u
    assert solveset(eq, x, domain=S.Reals) == u

    raises(ValueError, lambda: solveset(abs(x) - 1, x))
Пример #28
0
def test_no_sol():
    assert solveset_real(4, x) == EmptySet()
    assert solveset_real(exp(x), x) == EmptySet()
    assert solveset_real(x ** 2 + 1, x) == EmptySet()
    assert solveset_real(-3 * a / sqrt(x), x) == EmptySet()
    assert solveset_real(1 / x, x) == EmptySet()
    assert solveset_real(-(1 + x) / (2 + x) ** 2 + 1 / (2 + x), x) == EmptySet()
Пример #29
0
def test_solveset_sqrt_1():
    assert solveset_real(sqrt(5 * x + 6) - 2 - x, x) == FiniteSet(-S(1), S(2))
    assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
    assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
    assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
    assert solveset_real(sqrt(x ** 3), x) == FiniteSet(0)
    assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
Пример #30
0
def test_no_sol():
    assert solveset_real(4, x) == EmptySet()
    assert solveset_real(exp(x), x) == EmptySet()
    assert solveset_real(x**2 + 1, x) == EmptySet()
    assert solveset_real(-3 * a / sqrt(x), x) == EmptySet()
    assert solveset_real(1 / x, x) == EmptySet()
    assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \
        EmptySet()
Пример #31
0
def test_solveset_sqrt_1():
    assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
        FiniteSet(-S(1), S(2))
    assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
    assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
    assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
    assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
    assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
Пример #32
0
    def _intersect(self, other):
        from sympy.solvers.diophantine import diophantine
        if self.base_set is S.Integers:
            g = None
            if isinstance(other, ImageSet) and other.base_set is S.Integers:
                g = other.lamda.expr
                m = other.lamda.variables[0]
            elif other is S.Integers:
                m = g = Dummy('x')
            if g is not None:
                f = self.lamda.expr
                n = self.lamda.variables[0]
                # Diophantine sorts the solutions according to the alphabetic
                # order of the variable names, since the result should not depend
                # on the variable name, they are replaced by the dummy variables
                # below
                a, b = Dummy('a'), Dummy('b')
                f, g = f.subs(n, a), g.subs(m, b)
                solns_set = diophantine(f - g)
                if solns_set == set():
                    return EmptySet()
                solns = list(diophantine(f - g))

                if len(solns) != 1:
                    return

                # since 'a' < 'b', select soln for n
                nsol = solns[0][0]
                t = nsol.free_symbols.pop()
                return imageset(Lambda(n, f.subs(a, nsol.subs(t, n))), S.Integers)

        if other == S.Reals:
            from sympy.solvers.solveset import solveset_real
            from sympy.core.function import expand_complex
            if len(self.lamda.variables) > 1:
                return None

            f = self.lamda.expr
            n = self.lamda.variables[0]

            n_ = Dummy(n.name, real=True)
            f_ = f.subs(n, n_)

            re, im = f_.as_real_imag()
            im = expand_complex(im)

            return imageset(Lambda(n_, re),
                            self.base_set.intersect(
                                solveset_real(im, n_)))
Пример #33
0
    def _intersect(self, other):
        from sympy.solvers.diophantine import diophantine
        if self.base_set is S.Integers:
            g = None
            if isinstance(other, ImageSet) and other.base_set is S.Integers:
                g = other.lamda.expr
                m = other.lamda.variables[0]
            elif other is S.Integers:
                m = g = Dummy('x')
            if g is not None:
                f = self.lamda.expr
                n = self.lamda.variables[0]
                # Diophantine sorts the solutions according to the alphabetic
                # order of the variable names, since the result should not depend
                # on the variable name, they are replaced by the dummy variables
                # below
                a, b = Dummy('a'), Dummy('b')
                f, g = f.subs(n, a), g.subs(m, b)
                solns_set = diophantine(f - g)
                if solns_set == set():
                    return EmptySet()
                solns = list(diophantine(f - g))

                if len(solns) != 1:
                    return

                # since 'a' < 'b', select soln for n
                nsol = solns[0][0]
                t = nsol.free_symbols.pop()
                return imageset(Lambda(n, f.subs(a, nsol.subs(t, n))),
                                S.Integers)

        if other == S.Reals:
            from sympy.solvers.solveset import solveset_real
            from sympy.core.function import expand_complex
            if len(self.lamda.variables) > 1:
                return None

            f = self.lamda.expr
            n = self.lamda.variables[0]

            n_ = Dummy(n.name, real=True)
            f_ = f.subs(n, n_)

            re, im = f_.as_real_imag()
            im = expand_complex(im)

            return imageset(Lambda(n_, re),
                            self.base_set.intersect(solveset_real(im, n_)))
Пример #34
0
def test_solve_invert():
    assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
    assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))

    assert solveset_real(3**(x + 2), x) == FiniteSet()
    assert solveset_real(3**(2 - x), x) == FiniteSet()

    assert solveset_real(y - b*exp(a/x), x) == Intersection(S.Reals, FiniteSet(a/log(y/b)))
    # issue 4504
    assert solveset_real(2**x - 10, x) == FiniteSet(log(10)/log(2))
Пример #35
0
def test_solve_invert():
    assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
    assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))

    assert solveset_real(3 ** (x + 2), x) == FiniteSet()
    assert solveset_real(3 ** (2 - x), x) == FiniteSet()

    assert solveset_real(y - b * exp(a / x), x) == Intersection(S.Reals, FiniteSet(a / log(y / b)))
    # issue 4504
    assert solveset_real(2 ** x - 10, x) == FiniteSet(log(10) / log(2))
Пример #36
0
def test_solve_invert():
    assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
    assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))

    assert solveset_real(3**(x + 2), x) == FiniteSet()
    assert solveset_real(3**(2 - x), x) == FiniteSet()

    b = Symbol('b', positive=True)
    y = Symbol('y', positive=True)
    assert solveset_real(y - b*exp(a/x), x) == FiniteSet(a/log(y/b))
    # issue 4504
    assert solveset_real(2**x - 10, x) == FiniteSet(log(10)/log(2))
Пример #37
0
def test_solve_invert():
    assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
    assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))

    assert solveset_real(3**(x + 2), x) == FiniteSet()
    assert solveset_real(3**(2 - x), x) == FiniteSet()

    b = Symbol('b', positive=True)
    y = Symbol('y', positive=True)
    assert solveset_real(y - b * exp(a / x), x) == FiniteSet(a / log(y / b))
    # issue 4504
    assert solveset_real(2**x - 10, x) == FiniteSet(log(10) / log(2))
Пример #38
0
    def _intersect(self, other):
        from sympy import Dummy
        from sympy.solvers.diophantine import diophantine
        from sympy.sets.sets import imageset

        if self.base_set is S.Integers:
            if isinstance(other, ImageSet) and other.base_set is S.Integers:
                f, g = self.lamda.expr, other.lamda.expr
                n, m = self.lamda.variables[0], other.lamda.variables[0]

                # Diophantine sorts the solutions according to the alphabetic
                # order of the variable names, since the result should not depend
                # on the variable name, they are replaced by the dummy variables
                # below
                a, b = Dummy("a"), Dummy("b")
                f, g = f.subs(n, a), g.subs(m, b)
                solns_set = diophantine(f - g)
                if solns_set == set():
                    return EmptySet()
                solns = list(diophantine(f - g))
                if len(solns) == 1:
                    t = list(solns[0][0].free_symbols)[0]
                else:
                    return None

                # since 'a' < 'b'
                return imageset(Lambda(t, f.subs(a, solns[0][0])), S.Integers)

        if other == S.Reals:
            from sympy.solvers.solveset import solveset_real
            from sympy.core.function import expand_complex

            if len(self.lamda.variables) > 1:
                return None

            f = self.lamda.expr
            n = self.lamda.variables[0]

            n_ = Dummy(n.name, real=True)
            f_ = f.subs(n, n_)

            re, im = f_.as_real_imag()
            im = expand_complex(im)

            return imageset(Lambda(n_, re), self.base_set.intersect(solveset_real(im, n_)))
Пример #39
0
def test_solve_sqrt_3():
    R = Symbol("R")
    eq = sqrt(2) * R * sqrt(1 / (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 / (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(
        *[
            S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3,
            -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
            + 40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            + sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
            + S(5) / 3
            + I
            * (
                -sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
                - sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
                + 40 * im(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            ),
        ]
    )

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q) ** 2 + (-m / (2 * q) + S(1) / 2) ** 2) + sqrt(
        (-m ** 2 / 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
        + (m ** 2 / 2 - m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
    )
    unsolved_object = ConditionSet(
        q,
        Eq(
            (
                -2 * sqrt(4 * q ** 2 * (m - q) ** 2 + (-m + q) ** 2)
                + sqrt(
                    (-2 * m ** 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) - 1) ** 2
                    + (2 * m ** 2 - 4 * m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) - 1) ** 2
                )
                * Abs(q)
            )
            / Abs(q),
            0,
        ),
        S.Reals,
    )
    assert solveset_real(eq, q) == unsolved_object
Пример #40
0
def test_solve_sqrt_3():
    R = Symbol('R')
    eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(*[(S(5)/3 + 40/(3*(251 + 3*sqrt(111)*I)**(S(1)/3)) +
                       (251 + 3*sqrt(111)*I)**(S(1)/3)/3,), ((-160 + (1 +
                       sqrt(3)*I)*(10 - (1 + sqrt(3)*I)*(251 +
                       3*sqrt(111)*I)**(S(1)/3))*(251 +
                       3*sqrt(111)*I)**(S(1)/3))/Mul(6, (1 +
                       sqrt(3)*I), (251 + 3*sqrt(111)*I)**(S(1)/3),
                       evaluate=False),)])

    eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
        4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
            4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
    assert solveset_real(eq, q) == FiniteSet(
        m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4,
        m**2/2 + sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)
Пример #41
0
def solve_beguenstigungsbetrag(gewinn, hebesatz):
    """
    Berechnung des Thesaurierungshöchstbetrags

    :param gewinn: gewinn = zu versteuerndes Einkommen
    :param hebesatz: Hebesatz der Gemeinden gem. § 16 GewStG (in Prozent: Bsp. 480)
    :return: Thesaurierungshöchstbetrag
    """
    eq1 = Eq(
        B,
        gewinn - calc_gewst(gewinn, hebesatz, 1) - calc_est(gewinn - B) +
        calc_anrechnung_gewst(gewinn, hebesatz) - calc_est34a(B) - calc_solz(
            calc_est(gewinn - B)  # BMG für SolZ
            - calc_anrechnung_gewst(gewinn, hebesatz)  # BMG für SolZ
            + calc_est34a(B),  # BMG für SolZ
            einkommensteuerpflichtig=1))
    sol = solveset_real(
        eq1, B).args[0]  # Das erste Argument der Lösung wird ausgegeben
    return sol
Пример #42
0
def trust_region_step(g, B, delta):
    # Calculates the trust region 
    lamb = sp.Symbol('lamb')

    eigh = np.linalg.eig(B)

    # B is positive definite
    if eigh[0][0] > 0 and eigh[0][1] > 0:
        pMin = -np.linalg.solve(B, g)
        pMin_norm = np.linalg.norm(pMin, 2)

        if pMin_norm <= delta:
            return pMin
    
    # B is not positive definite
    q1T = np.transpose(eigh[1][:, 0])
    q2T = np.transpose(eigh[1][:, 1])

    # Setting up the equation
    pLambda = ((np.dot(q1T, g) ** 2) / ((eigh[0][0] + lamb) ** 2)) \
            + ((np.dot(q2T, g) ** 2) / ((eigh[0][1] + lamb) ** 2)) \
            - delta ** 2

    # Symbolically solving
    lamb_solved = solveset_real(pLambda[0], lamb)
    lamb_solved = list(lamb_solved)

    # Getting the lambda
    for i in range(len(lamb_solved)):
        # Lambda needs to be strictly positive and greater than negative of smallest eig
        if lamb_solved[i] > 0 and lamb_solved[i] > -min(eigh[0]):
            lamb_pos = lamb_solved[i]

    BlambI = B + lamb_pos * np.identity(2)
    BlambI = BlambI.astype(np.float)
    pMin = np.linalg.solve(BlambI, -g)

    return pMin
Пример #43
0
def test_solve_sqrt_3():
    R = Symbol('R')
    eq = sqrt(2) * R * sqrt(1 /
                            (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 /
                                                                 (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(
        *[(S(5) / 3 + 40 / (3 * (251 + 3 * sqrt(111) * I)**(S(1) / 3)) +
           (251 + 3 * sqrt(111) * I)**(S(1) / 3) / 3, ),
          ((-160 + (1 + sqrt(3) * I) *
            (10 - (1 + sqrt(3) * I) * (251 + 3 * sqrt(111) * I)**(S(1) / 3)) *
            (251 + 3 * sqrt(111) * I)**(S(1) / 3)) /
           Mul(6, (1 + sqrt(3) * I), (251 + 3 * sqrt(111) * I)**(S(1) / 3),
               evaluate=False), )])

    eq = -sqrt((m - q)**2 + (-m / (2 * q) + S(1) / 2)**2) + sqrt(
        (-m**2 / 2 - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 - S(1) / 4)**2 +
        (m**2 / 2 - m - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 -
         S(1) / 4)**2)
    assert solveset_real(eq, q) == FiniteSet(
        m**2 / 2 - sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 - S(1) / 4,
        m**2 / 2 + sqrt(4 * m**4 - 4 * m**2 + 8 * m + 1) / 4 - S(1) / 4)
Пример #44
0
def test_solve_only_exp_1():
    y = Symbol('y', positive=True, finite=True)
    assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
    assert solveset_real(exp(x) + exp(-x) - 4, x) == \
        FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
    assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
Пример #45
0
def test_solve_lambert():
    assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
    assert solveset_real(x + 2**x, x) == \
        FiniteSet(-LambertW(log(2))/log(2))

    # issue 4739
    assert solveset_real(exp(log(5)*x) - 2**x, x) == FiniteSet(0)
    ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
    assert ans == FiniteSet(-Rational(5, 3) +
                            LambertW(-10240*2**(S(1)/3)*log(2)/3)/(5*log(2)))

    eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
    result = solveset_real(eq, x)
    ans = FiniteSet((log(2401) +
                     5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
    assert result == ans
    assert solveset_real(eq.expand(), x) == result

    assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
        FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)

    assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
        FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2)

    assert solveset_real(3*x + log(4*x), x) == \
        FiniteSet(LambertW(Rational(3, 4))/3)

    assert solveset_complex(x**z*y**z - 2, z) == \
        FiniteSet(log(2)/(log(x) + log(y)))

    assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))

    a = Symbol('a')
    assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
    a = Symbol('a', real=True)
    assert solveset_real(a/x + exp(x/2), x) == \
        FiniteSet(2*LambertW(-a/2))
    assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
        FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))

    assert solveset_real(1/(1/x - y + exp(y)), x) == EmptySet()
    # coverage test
    p = Symbol('p', positive=True)
    w = Symbol('w')
    assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet()
    assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()
    assert solveset_real(2*x**w - 4*y**w, w) == \
        solveset_real((x/y)**w - 2, w)

    assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
        FiniteSet(LambertW(3*S.Exp1)/3)
    assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
        FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
    assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
        FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
    assert solveset_real(x*log(x) + 3*x + 1, x) == \
        FiniteSet(exp(-3 + LambertW(-exp(3))))
    eq = (x*exp(x) - 3).subs(x, x*exp(x))
    assert solveset_real(eq, x) == \
        FiniteSet(LambertW(3*exp(-LambertW(3))))

    assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
        FiniteSet(-((log(a**5) + LambertW(S(1)/3))/(3*log(a))))
    p = symbols('p', positive=True)
    assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
        FiniteSet(
        log((-3**(S(1)/3) - 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
        log((-3**(S(1)/3) + 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
        log((3*LambertW(S(1)/3)/p**5)**(1/(3*log(p)))),)  # checked numerically
    # check collection
    b = Symbol('b')
    eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
    assert solveset_real(eq, x) == FiniteSet(
        -((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))

    # issue 4271
    assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
        6*LambertW((-1)**(S(1)/3)*a**(S(1)/3)/3))

    assert solveset_real(x**3 - 3**x, x) == \
        FiniteSet(-3/log(3)*LambertW(-log(3)/3))
    assert solveset_real(x**2 - 2**x, x) == FiniteSet(2)
    assert solveset_real(-x**2 + 2**x, x) == FiniteSet(2)
    assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
        acos(-3*LambertW(-log(3)/3)/log(3)))

    assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
    assert solveset_real(5**(x/2) - 2**(x/3), x) == FiniteSet(0)
    b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
    assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
Пример #46
0
def test_solve_invalid_sol():
    assert 0 not in solveset_real(sin(x) / x, x)
    assert 0 not in solveset_complex((exp(x) - 1) / x, x)
Пример #47
0
def test_solve_lambert():
    assert solveset_real(x * exp(x) - 1, x) == FiniteSet(LambertW(1))
    assert solveset_real(x + 2**x, x) == \
        FiniteSet(-LambertW(log(2))/log(2))

    # issue 4739
    assert solveset_real(exp(log(5) * x) - 2**x, x) == FiniteSet(0)
    ans = solveset_real(3 * x + 5 + 2**(-5 * x + 3), x)
    assert ans == FiniteSet(-Rational(5, 3) +
                            LambertW(-10240 * 2**(S(1) / 3) * log(2) / 3) /
                            (5 * log(2)))

    eq = 2 * (3 * x + 4)**5 - 6 * 7**(3 * x + 9)
    result = solveset_real(eq, x)
    ans = FiniteSet(
        (log(2401) + 5 * LambertW(-log(7**(7 * 3**Rational(1, 5) / 5)))) /
        (3 * log(7)) / -1)
    assert result == ans
    assert solveset_real(eq.expand(), x) == result

    assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
        FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)

    assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
        FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2)

    assert solveset_real(3*x + log(4*x), x) == \
        FiniteSet(LambertW(Rational(3, 4))/3)

    assert solveset_complex(x**z*y**z - 2, z) == \
        FiniteSet(log(2)/(log(x) + log(y)))

    assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))

    a = Symbol('a')
    assert solveset_real(-a * x + 2 * x * log(x), x) == FiniteSet(exp(a / 2))
    a = Symbol('a', real=True)
    assert solveset_real(a/x + exp(x/2), x) == \
        FiniteSet(2*LambertW(-a/2))
    assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
        FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))

    assert solveset_real(1 / (1 / x - y + exp(y)), x) == EmptySet()
    # coverage test
    p = Symbol('p', positive=True)
    w = Symbol('w')
    assert solveset_real((1 / p + 1)**(p + 1), p) == EmptySet()
    assert solveset_real(tanh(x + 3) * tanh(x - 3) - 1, x) == EmptySet()
    assert solveset_real(2*x**w - 4*y**w, w) == \
        solveset_real((x/y)**w - 2, w)

    assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
        FiniteSet(LambertW(3*S.Exp1)/3)
    assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
        FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
    assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
        FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
    assert solveset_real(x*log(x) + 3*x + 1, x) == \
        FiniteSet(exp(-3 + LambertW(-exp(3))))
    eq = (x * exp(x) - 3).subs(x, x * exp(x))
    assert solveset_real(eq, x) == \
        FiniteSet(LambertW(3*exp(-LambertW(3))))

    assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
        FiniteSet(-((log(a**5) + LambertW(S(1)/3))/(3*log(a))))
    p = symbols('p', positive=True)
    assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
        FiniteSet(
        log((-3**(S(1)/3) - 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
        log((-3**(S(1)/3) + 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
        log((3*LambertW(S(1)/3)/p**5)**(1/(3*log(p)))),)  # checked numerically
    # check collection
    b = Symbol('b')
    eq = 3 * log(a**(3 * x + 5)) + b * log(a**(3 * x + 5)) + a**(3 * x + 5)
    assert solveset_real(
        eq,
        x) == FiniteSet(-((log(a**5) + LambertW(1 / (b + 3))) / (3 * log(a))))

    # issue 4271
    assert solveset_real((a / x + exp(x / 2)).diff(x, 2),
                         x) == FiniteSet(6 * LambertW(
                             (-1)**(S(1) / 3) * a**(S(1) / 3) / 3))

    assert solveset_real(x**3 - 3**x, x) == \
        FiniteSet(-3/log(3)*LambertW(-log(3)/3))
    assert solveset_real(x**2 - 2**x, x) == FiniteSet(2)
    assert solveset_real(-x**2 + 2**x, x) == FiniteSet(2)
    assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
        acos(-3 * LambertW(-log(3) / 3) / log(3)))

    assert solveset_real(4**(x / 2) - 2**(x / 3), x) == FiniteSet(0)
    assert solveset_real(5**(x / 2) - 2**(x / 3), x) == FiniteSet(0)
    b = sqrt(6) * sqrt(log(2)) / sqrt(log(5))
    assert solveset_real(5**(x / 2) - 2**(3 / x), x) == FiniteSet(-b, b)
Пример #48
0
def test_solve_only_exp_2():
    assert solveset_real(exp(x/y)*exp(-z/y) - 2, y) == \
        FiniteSet((x - z)/log(2))
    assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
        FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
Пример #49
0
def test_atan2():
    # The .inverse() method on atan2 works only if x.is_real is True and the
    # second argument is a real constant
    assert solveset_real(atan2(x, 2) - pi / 3, x) == FiniteSet(2 * sqrt(3))
Пример #50
0
def test_solve_only_exp_1():
    y = Symbol('y', positive=True, finite=True)
    assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
    assert solveset_real(exp(x) + exp(-x) - 4, x) == \
        FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
    assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
Пример #51
0
def test_units():
    assert solveset_real(1 / x - 1 / (2 * cm), x) == FiniteSet(2 * cm)
Пример #52
0
def test_poly_gens():
    assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
        FiniteSet(-Rational(3, 2), S.Half)
Пример #53
0
def test_solve_only_exp_2():
    assert solveset_real(exp(x/y)*exp(-z/y) - 2, y) == \
        FiniteSet((x - z)/log(2))
    assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
        FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
Пример #54
0
def test_solveset_real_log():
    assert solveset_real(log((x-1)*(x+1)), x) == \
        FiniteSet(sqrt(2), -sqrt(2))
Пример #55
0
def test_atan2():
    # The .inverse() method on atan2 works only if x.is_real is True and the
    # second argument is a real constant
    assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
Пример #56
0
def test_solveset_real_rational():
    """Test solveset_real for rational functions"""
    assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
        == FiniteSet(y**3)
    # issue 4486
    assert solveset_real(2 * x / (x + 2) - 1, x) == FiniteSet(2)
Пример #57
0
def test_solve_invalid_sol():
    assert 0 not in solveset_real(sin(x)/x, x)
    assert 0 not in solveset_complex((exp(x) - 1)/x, x)
Пример #58
0
def test_uselogcombine_2():
    eq = z - log(x) + log(y / (x * (-1 + y**2 / x**2)))
    assert solveset_real(eq, x) == \
        FiniteSet(-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z))))
Пример #59
0
def intersection_sets(self, other):  # noqa:F811
    from sympy.solvers.diophantine import diophantine

    # Only handle the straight-forward univariate case
    if (len(self.lamda.variables) > 1
            or self.lamda.signature != self.lamda.variables):
        return None
    base_set = self.base_sets[0]

    # Intersection between ImageSets with Integers as base set
    # For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the
    # diophantine equations f(n)=g(m).
    # If the solutions for n are {h(t) : t in Integers} then we return
    # {f(h(t)) : t in integers}.
    # If the solutions for n are {n_1, n_2, ..., n_k} then we return
    # {f(n_i) : 1 <= i <= k}.
    if base_set is S.Integers:
        gm = None
        if isinstance(other, ImageSet) and other.base_sets == (S.Integers, ):
            gm = other.lamda.expr
            var = other.lamda.variables[0]
            # Symbol of second ImageSet lambda must be distinct from first
            m = Dummy('m')
            gm = gm.subs(var, m)
        elif other is S.Integers:
            m = gm = Dummy('m')
        if gm is not None:
            fn = self.lamda.expr
            n = self.lamda.variables[0]
            try:
                solns = list(diophantine(fn - gm, syms=(n, m), permute=True))
            except (TypeError, NotImplementedError):
                # TypeError if equation not polynomial with rational coeff.
                # NotImplementedError if correct format but no solver.
                return
            # 3 cases are possible for solns:
            # - empty set,
            # - one or more parametric (infinite) solutions,
            # - a finite number of (non-parametric) solution couples.
            # Among those, there is one type of solution set that is
            # not helpful here: multiple parametric solutions.
            if len(solns) == 0:
                return EmptySet
            elif any(not isinstance(s, int) and s.free_symbols
                     for tupl in solns for s in tupl):
                if len(solns) == 1:
                    soln, solm = solns[0]
                    (t, ) = soln.free_symbols
                    expr = fn.subs(n, soln.subs(t, n)).expand()
                    return imageset(Lambda(n, expr), S.Integers)
                else:
                    return
            else:
                return FiniteSet(*(fn.subs(n, s[0]) for s in solns))

    if other == S.Reals:
        from sympy.solvers.solveset import solveset_real
        from sympy.core.function import expand_complex

        f = self.lamda.expr
        n = self.lamda.variables[0]

        n_ = Dummy(n.name, real=True)
        f_ = f.subs(n, n_)

        re, im = f_.as_real_imag()
        im = expand_complex(im)

        re = re.subs(n_, n)
        im = im.subs(n_, n)
        ifree = im.free_symbols
        lam = Lambda(n, re)
        if not im:
            # allow re-evaluation
            # of self in this case to make
            # the result canonical
            pass
        elif im.is_zero is False:
            return S.EmptySet
        elif ifree != {n}:
            return None
        else:
            # univarite imaginary part in same variable
            base_set = base_set.intersect(solveset_real(im, n))
        return imageset(lam, base_set)

    elif isinstance(other, Interval):
        from sympy.solvers.solveset import (invert_real, invert_complex,
                                            solveset)

        f = self.lamda.expr
        n = self.lamda.variables[0]
        new_inf, new_sup = None, None
        new_lopen, new_ropen = other.left_open, other.right_open

        if f.is_real:
            inverter = invert_real
        else:
            inverter = invert_complex

        g1, h1 = inverter(f, other.inf, n)
        g2, h2 = inverter(f, other.sup, n)

        if all(isinstance(i, FiniteSet) for i in (h1, h2)):
            if g1 == n:
                if len(h1) == 1:
                    new_inf = h1.args[0]
            if g2 == n:
                if len(h2) == 1:
                    new_sup = h2.args[0]
            # TODO: Design a technique to handle multiple-inverse
            # functions

            # Any of the new boundary values cannot be determined
            if any(i is None for i in (new_sup, new_inf)):
                return

            range_set = S.EmptySet

            if all(i.is_real for i in (new_sup, new_inf)):
                # this assumes continuity of underlying function
                # however fixes the case when it is decreasing
                if new_inf > new_sup:
                    new_inf, new_sup = new_sup, new_inf
                new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen)
                range_set = base_set.intersect(new_interval)
            else:
                if other.is_subset(S.Reals):
                    solutions = solveset(f, n, S.Reals)
                    if not isinstance(range_set, (ImageSet, ConditionSet)):
                        range_set = solutions.intersect(other)
                    else:
                        return

            if range_set is S.EmptySet:
                return S.EmptySet
            elif isinstance(range_set,
                            Range) and range_set.size is not S.Infinity:
                range_set = FiniteSet(*list(range_set))

            if range_set is not None:
                return imageset(Lambda(n, f), range_set)
            return
        else:
            return
Пример #60
0
def test_real_imag_splitting():
    a, b = symbols('a b', real=True, finite=True)
    assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
        FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
    assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
        S.EmptySet